$$ \text { If } a \mathcal{N}=\{a x: x \in \mathcal{N}\} \text {, then } 3 \mathcal{N} \cap 7 \mathcal{N} \text { is } $$
$$ \text { Let } \mathrm{A} \text { and } \mathrm{B} \text { be two sets then } A-(A \cap B) \text { is equal to } $$
A relation $$R$$ is defined from $$\{2,3,4\}$$ to $$\{3,6,7,10\}$$. If $$x R y \Leftrightarrow x$$ and $$y$$ are co prime numbers. Then range of $$R$$ is
$$\begin{aligned} &\begin{aligned} & \text { A, B, C are subsets of the Universal set U } \\ & \text { If } \mathrm{A}=\{x: x \text { is even number, } x \leq 20\} \\ & \mathrm{B}=\{x: x \text { is multiple of } 3, x \leq 15\} \\ & \mathrm{C}=\{x: x \text { is multiple of } 5, x \leq 20\} \\ & \mathrm{U}=\text { Set of whole numbers } \end{aligned}\\ &\text { then the Venn diagram representing } \mathrm{U}, \mathrm{A}, \mathrm{B} \text { and } \mathrm{C} \text { is } \end{aligned}$$