1
COMEDK 2024 Morning Shift
+1
-0

$$\text { If } A=\{1,2,3,4,5\} \text { and } B=\{2,3,6,7\} \text { then number of elements in the set }(A \times B) \cap(B \times A) \text { is equal to }$$

A
20
B
10
C
4
D
5
2
COMEDK 2024 Morning Shift
+1
-0

Express the set $$A=\{1,7,17,31,49\}$$ in set builder form

A
$$\left\{x \mid x=2 n^2-1\right.$$, where $$n \in \mathcal{N}$$ and $$\left.n < 5\right\}$$
B
$$\left\{x \mid x=2 n^2-3\right.$$, where $$n \in \mathcal{N}$$ and $$\left.2 \leq n \leq 8\right\}$$
C
$$\left\{x \mid x=2 n^2+1\right.$$, where $$n \in \mathcal{N}$$ and $$\left.n \leq 7\right\}$$
D
$$\left\{x \mid x=2 n^2-1\right.$$, where $$n \in \mathcal{N}$$ and $$\left.n \leq 5\right\}$$
3
COMEDK 2023 Morning Shift
+1
-0

If $$A=\{a, b, c\}, B=\{b, c, d\}$$ and $$C=\{a, d, c\}$$ then $$(A-B) \times(B \cap C)$$ is equal to

A
$$\{(a, c),(a, d)\}$$
B
$$\{(a, b),(c, d)\}$$
C
$$\{(c, a),(d, a)\}$$
D
$$\{(a, c),(a, d),(b, d)\}$$
4
COMEDK 2023 Morning Shift
+1
-0

If $$n(A)=p$$ and $$n(B)=q$$, then the numbers of relations from the set $$A$$ to the set $$B$$ is

A
$$2^{p+q}$$
B
$$2^{p q}$$
C
$$p+q$$
D
$$p q$$
EXAM MAP
Medical
NEET