1
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A signal $${e^{ - \alpha t}}\,\sin \left( {\omega t} \right)$$ is the input to a real Linear Time Invariant system. Given $$K$$ and $$\phi $$ are constants, the output of the system will be of the form $$K{e^{ - \beta t}}\,\sin \,\left( {\upsilon t + \phi } \right)$$ where
A
$$\beta $$ need not be equal to $$\alpha $$ but $$\upsilon $$ equal to
B
$$\upsilon $$ need not be equal to $$\omega $$ but $$\beta $$ equal to $$\alpha $$
C
$$\beta $$ equal to $$\alpha $$ and $$\upsilon $$ equal to $$\omega $$
D
$$\beta $$ need not be equal to $$\alpha $$ and $$\upsilon $$ need not be equal to $$\omega $$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given X(z)=$$\frac z{\left(z-a\right)^2}$$ with $$\left|z\right|$$ > a, the residue of X(z)zn-1 at z = a for n $$\geq$$ 0 will be
A
an-1
B
an
C
nan
D
nan-1
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A function y(t) satisfies the following differential equation:$$$\frac{\operatorname dy\left(t\right)}{\operatorname dt}+\;y\left(t\right)\;=\;\delta\left(t\right)$$$ where $$\delta\left(t\right)$$ is the delta function. Assuming zero initial condition, and denoting the unit step function by u(t), y(t) can be of the form
A
et
B
e-t
C
etu(t)
D
e-tu(t)
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let x(t) be a periodic signal with time period T. Let y(t) = x(t - t0) + x(t + t0) for some t0. The Fourier Series coefficient of y(t) are denoted by bk. If bk=0 for all odd k, then t0 can be equal to
A
T/8
B
T/4
C
T/2
D
2T
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12