1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Voltage phasors at the two terminals of a transmission line of length $$70$$ km have a magnitude of $$1.0$$ per unit but are $$180$$ degrees out of phase. Assuming that the maximum load current in the line is $$1/5$$th of minimum $$3$$-phase fault current. Which one of the following transmission line protection schemes will NOT pick up for this condition?
A
Distance protection using mho relays with zone-$$1$$ set to $$80$$% of the line impedance.
B
Directional over current protection set to pick up at $$1.25$$ times the maximum load current
C
Pilot relaying system with directional comparison scheme
D
Pilot relaying system with segregated phase comparison scheme.
2
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A signal $${e^{ - \alpha t}}\,\sin \left( {\omega t} \right)$$ is the input to a real Linear Time Invariant system. Given $$K$$ and $$\phi $$ are constants, the output of the system will be of the form $$K{e^{ - \beta t}}\,\sin \,\left( {\upsilon t + \phi } \right)$$ where
A
$$\beta $$ need not be equal to $$\alpha $$ but $$\upsilon $$ equal to
B
$$\upsilon $$ need not be equal to $$\omega $$ but $$\beta $$ equal to $$\alpha $$
C
$$\beta $$ equal to $$\alpha $$ and $$\upsilon $$ equal to $$\omega $$
D
$$\beta $$ need not be equal to $$\alpha $$ and $$\upsilon $$ need not be equal to $$\omega $$
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a linear time invariant system is given as $$G\left( s \right) = {1 \over {{s^2} + 3s + 2}}.$$ The steady state value of the output of this system for a unit impulse input applied at time instant $$t=1$$ will be
A
$$0$$
B
$$0.5$$
C
$$1$$
D
$$2$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal $$x\left( t \right) = \sin c\left( {\alpha t} \right)$$ where $$\alpha $$ is a real constant $$\left( {\sin \,c\left( x \right) = {{\sin \left( {\pi x} \right)} \over {\pi x}}} \right)$$ is the input to a linear Time invariant system whose impulse response $$h\left( t \right) = \sin c\left( {\beta t} \right)$$ where $$\beta $$ is a real constant. If $$\min \left( {\alpha ,\,\,\beta } \right)$$ denotes the minimum of $$\alpha $$ and $$\beta $$, and similarly $$\max \left( {\alpha ,\,\,\beta } \right)$$ denotes the maximum of $$\alpha $$ and $$\beta $$, and $$K$$ is a constant, which one of the following statements is true about the output of the system?
A
It will be of the form $$K$$ $$sinc$$$$\left( {\gamma t} \right)$$ where $$\gamma = \,\min \left( {\alpha ,\,\,\beta } \right)$$
B
It will be of the form $$K$$ $$sinc$$$$\left( {\gamma t} \right)$$ where $$\gamma = \,\max \left( {\alpha ,\,\,\beta } \right)$$
C
It will be of the form $$K$$ $$\sin c\left( {\alpha t} \right)$$
D
It cannot be a $$sinc$$ type of signal
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12