1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a linear time invariant system is given as $$G\left( s \right) = {1 \over {{s^2} + 3s + 2}}.$$ The steady state value of the output of this system for a unit impulse input applied at time instant $$t=1$$ will be
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal $$x\left( t \right) = \sin c\left( {\alpha t} \right)$$ where $$\alpha $$ is a real constant $$\left( {\sin \,c\left( x \right) = {{\sin \left( {\pi x} \right)} \over {\pi x}}} \right)$$ is the input to a linear Time invariant system whose impulse response $$h\left( t \right) = \sin c\left( {\beta t} \right)$$ where $$\beta $$ is a real constant. If $$\min \left( {\alpha ,\,\,\beta } \right)$$ denotes the minimum of $$\alpha $$ and $$\beta $$, and similarly $$\max \left( {\alpha ,\,\,\beta } \right)$$ denotes the maximum of $$\alpha $$ and $$\beta $$, and $$K$$ is a constant, which one of the following statements is true about the output of the system?
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A system with input $$x(t)$$ and output $$y(t)$$ is defined by the input $$-$$ output relation:
$$y\left( t \right) = \int\limits_{ - \infty }^{ - 2t} {x\left( \tau \right)} d\tau .$$ The system will be
$$y\left( t \right) = \int\limits_{ - \infty }^{ - 2t} {x\left( \tau \right)} d\tau .$$ The system will be
4
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of a causal linear time-invariant system is given as $$h(t)$$. Now consider the following two statements:
Statement-$$\left( {\rm I} \right)$$: Principle of superposition holds
Statement-$$\left( {\rm II} \right)$$: $$h\left( t \right) = 0$$ for $$t < 0$$
Which one of the following statements is correct?
Paper analysis
Total Questions
Analog Electronics
8
Control Systems
8
Digital Electronics
3
Electric Circuits
5
Electrical and Electronics Measurement
4
Electrical Machines
14
Electromagnetic Fields
3
Engineering Mathematics
8
Power Electronics
8
Power System Analysis
10
Signals and Systems
9
More papers of GATE EE
GATE EE 2024
GATE EE 2023
GATE EE 2022
GATE EE 2021
GATE EE 2020
GATE EE 2019
GATE EE 2018
GATE EE 2017 Set 2
GATE EE 2017 Set 1
GATE EE 2016 Set 2
GATE EE 2016 Set 1
GATE EE 2015 Set 1
GATE EE 2015 Set 2
GATE EE 2014 Set 3
GATE EE 2014 Set 2
GATE EE 2014 Set 1
GATE EE 2013
GATE EE 2012
GATE EE 2011
GATE EE 2010
GATE EE 2009
GATE EE 2008
GATE EE 2007
GATE EE 2006
GATE EE 2005
GATE EE 2004
GATE EE 2003
GATE EE 2002
GATE EE 2001
GATE EE 2000
GATE EE 1999
GATE EE 1998
GATE EE 1997
GATE EE 1996
GATE EE 1995
GATE EE 1994
GATE EE 1993
GATE EE 1992
GATE EE 1991
GATE EE
Papers
2024
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991