1
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A two machine power system in shown below. Transmission line $$XY$$ has positive sequence impedance of $${Z_1}\Omega $$ and zero sequence impedance of $${Z_0}\Omega $$ GATE EE 2008 Power System Analysis - Switch Gear and Protection Question 16 English
An $$'a'$$ phase to ground fault with zero fault impedance occurs at the centre of the transmission line. Bus voltage at $$X$$ and line current from $$X$$ to $$F$$ for the phase $$'a',$$ are given by $${V_a}$$ Volts and $${{\rm I}_a}$$ Amperes, respectively. Then, the impedance measured by the ground distance relay located at the terminal $$X$$ of line $$XY$$ will be given by
A
$${Z_1}/2\Omega $$
B
$${Z_0}/2\Omega $$
C
$$\left( {{Z_0} + {Z_1}} \right)/2\Omega $$
D
$${V_a}/{{\rm I}_a}\,\Omega $$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Voltage phasors at the two terminals of a transmission line of length $$70$$ km have a magnitude of $$1.0$$ per unit but are $$180$$ degrees out of phase. Assuming that the maximum load current in the line is $$1/5$$th of minimum $$3$$-phase fault current. Which one of the following transmission line protection schemes will NOT pick up for this condition?
A
Distance protection using mho relays with zone-$$1$$ set to $$80$$% of the line impedance.
B
Directional over current protection set to pick up at $$1.25$$ times the maximum load current
C
Pilot relaying system with directional comparison scheme
D
Pilot relaying system with segregated phase comparison scheme.
3
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A signal $${e^{ - \alpha t}}\,\sin \left( {\omega t} \right)$$ is the input to a real Linear Time Invariant system. Given $$K$$ and $$\phi $$ are constants, the output of the system will be of the form $$K{e^{ - \beta t}}\,\sin \,\left( {\upsilon t + \phi } \right)$$ where
A
$$\beta $$ need not be equal to $$\alpha $$ but $$\upsilon $$ equal to
B
$$\upsilon $$ need not be equal to $$\omega $$ but $$\beta $$ equal to $$\alpha $$
C
$$\beta $$ equal to $$\alpha $$ and $$\upsilon $$ equal to $$\omega $$
D
$$\beta $$ need not be equal to $$\alpha $$ and $$\upsilon $$ need not be equal to $$\omega $$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A system with input $$x(t)$$ and output $$y(t)$$ is defined by the input $$-$$ output relation:
$$y\left( t \right) = \int\limits_{ - \infty }^{ - 2t} {x\left( \tau \right)} d\tau .$$ The system will be
A
causal, time $$-$$ invariant and unstable
B
causal, time $$-$$ invariant and stable
C
non $$-$$ causal, time $$-$$ invariant and unstable
D
non $$-$$ causal, time $$-$$ variant and unstable
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12