1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A $$3$$-phase, $$440$$ $$V,$$ $$50$$ $$Hz,$$ $$4$$ pole, slip ring induction motor is feed from the rotor side through an auto transformer and the stator is connected to a variable resistance as shown in the figure.
The motor is coupled to a $$220$$ $$V$$, separately excited $$d.c.$$ generator feeding power to fixed resistance of $$10\Omega .$$ Two watt-meter method is used to measure the input power to induction motor. The variable resistance is adjusted such that motor recorded
$${W_1} = 1800\,W,\,\,{W_2} = - 200\,W.$$
The Speed of rotation of stator magnetic field with respect to rotor structure will be
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A $$400$$ $$V,$$ $$50$$ $$Hz,$$ $$30$$ $$hp,$$ three-phase induction motor is drawing $$50$$ A current at $$0.8$$ power factor lagging. The stator and rotor copper losses are $$1.5kW$$ and $$900$$ $$W$$ respectively. The friction and windage losses are $$1050$$ $$W$$ and the core losses are $$1200$$ $$W.$$ The air-gap power of the motor will be
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A $$400$$ $$V,$$ $$50$$ $$Hz$$, $$4$$ pole, $$1400$$ $$rpm$$, star connected squirrel cage induction motor has the following parameters referred to the stator:
$$R = 1.0\,\Omega ,{X_s} = X{'_r} = 1.5\,\Omega $$ Neglect stator resistance and core and rotational losses of the motor. The motor is controlled from a $$3$$-phase voltage source inverter with constant $$V/f$$ control. The stator line-to-line voltage $$(rms)$$ and frequency to obtain the maximum torque at starting will be:
$$R = 1.0\,\Omega ,{X_s} = X{'_r} = 1.5\,\Omega $$ Neglect stator resistance and core and rotational losses of the motor. The motor is controlled from a $$3$$-phase voltage source inverter with constant $$V/f$$ control. The stator line-to-line voltage $$(rms)$$ and frequency to obtain the maximum torque at starting will be:
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The core of two-winding transformer is subjected to a magnetic flux variation as indicated in the figure.
The induced $$emf$$ $$\left( {{e_{rs}}} \right)$$ in the secondary winding as a function of time will be of the form
Paper analysis
Total Questions
Analog Electronics
8
Control Systems
8
Digital Electronics
3
Electric Circuits
5
Electrical and Electronics Measurement
4
Electrical Machines
14
Electromagnetic Fields
3
Engineering Mathematics
8
Power Electronics
8
Power System Analysis
10
Signals and Systems
9
More papers of GATE EE
GATE EE 2024
GATE EE 2023
GATE EE 2022
GATE EE 2021
GATE EE 2020
GATE EE 2019
GATE EE 2018
GATE EE 2017 Set 2
GATE EE 2017 Set 1
GATE EE 2016 Set 2
GATE EE 2016 Set 1
GATE EE 2015 Set 1
GATE EE 2015 Set 2
GATE EE 2014 Set 3
GATE EE 2014 Set 2
GATE EE 2014 Set 1
GATE EE 2013
GATE EE 2012
GATE EE 2011
GATE EE 2010
GATE EE 2009
GATE EE 2008
GATE EE 2007
GATE EE 2006
GATE EE 2005
GATE EE 2004
GATE EE 2003
GATE EE 2002
GATE EE 2001
GATE EE 2000
GATE EE 1999
GATE EE 1998
GATE EE 1997
GATE EE 1996
GATE EE 1995
GATE EE 1994
GATE EE 1993
GATE EE 1992
GATE EE 1991
GATE EE
Papers
2024
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991