1
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
An extra high voltage transmission line of length $$300$$ km can be approximate by a lossless line having propagation constant $$\beta = 0.00127$$ radians per km. then the percentage ratio of line length to wavelength will be given by
A
$$24.24$$%
B
$$12.12$$%
C
$$19.05$$%
D
$$6.06$$%
2
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A two machine power system in shown below. Transmission line $$XY$$ has positive sequence impedance of $${Z_1}\Omega $$ and zero sequence impedance of $${Z_0}\Omega $$ GATE EE 2008 Power System Analysis - Switch Gear and Protection Question 16 English
An $$'a'$$ phase to ground fault with zero fault impedance occurs at the centre of the transmission line. Bus voltage at $$X$$ and line current from $$X$$ to $$F$$ for the phase $$'a',$$ are given by $${V_a}$$ Volts and $${{\rm I}_a}$$ Amperes, respectively. Then, the impedance measured by the ground distance relay located at the terminal $$X$$ of line $$XY$$ will be given by
A
$${Z_1}/2\Omega $$
B
$${Z_0}/2\Omega $$
C
$$\left( {{Z_0} + {Z_1}} \right)/2\Omega $$
D
$${V_a}/{{\rm I}_a}\,\Omega $$
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Voltage phasors at the two terminals of a transmission line of length $$70$$ km have a magnitude of $$1.0$$ per unit but are $$180$$ degrees out of phase. Assuming that the maximum load current in the line is $$1/5$$th of minimum $$3$$-phase fault current. Which one of the following transmission line protection schemes will NOT pick up for this condition?
A
Distance protection using mho relays with zone-$$1$$ set to $$80$$% of the line impedance.
B
Directional over current protection set to pick up at $$1.25$$ times the maximum load current
C
Pilot relaying system with directional comparison scheme
D
Pilot relaying system with segregated phase comparison scheme.
4
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A signal $${e^{ - \alpha t}}\,\sin \left( {\omega t} \right)$$ is the input to a real Linear Time Invariant system. Given $$K$$ and $$\phi $$ are constants, the output of the system will be of the form $$K{e^{ - \beta t}}\,\sin \,\left( {\upsilon t + \phi } \right)$$ where
A
$$\beta $$ need not be equal to $$\alpha $$ but $$\upsilon $$ equal to
B
$$\upsilon $$ need not be equal to $$\omega $$ but $$\beta $$ equal to $$\alpha $$
C
$$\beta $$ equal to $$\alpha $$ and $$\upsilon $$ equal to $$\omega $$
D
$$\beta $$ need not be equal to $$\alpha $$ and $$\upsilon $$ need not be equal to $$\omega $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12