1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A single phase full bridge converter supplies a load drawing constant and ripple free load current. If the triggering angle is $${30^ \circ },$$ the input power factor will be
A
$$0.65$$
B
$$0.78$$
C
$$0.85$$
D
$$0.866$$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A lossless power system has to serve a load of $$250$$ $$MW.$$ There are two generators ($$G1$$ and $$G2$$) in the system with cost curves $${C_1}$$ and $${C_2}$$ respectively defined as follows:
$${C_1}\left( {{P_{G1}}} \right) = {P_{G1}} + 0.055 \times P_{G1}^2$$
$${C_2}\left( {{P_{G2}}} \right) = 3{P_{G2}} + 0.03 \times P_{G2}^2$$
Where $${P_{G1}}$$ and $${P_{G2}}$$ are the MW injections from generator $${G_1}$$ and $${G_2}$$ respectively. Thus, the minimum cost dispatch will be
A
$${P_{G1}} = 250\,MW;\,\,{P_{G2}} = 0\,MW$$
B
$${P_{G1}} = 150\,MW;\,\,{P_{G2}} = 100\,MW$$
C
$${P_{G1}} = 100\,MW;\,\,{P_{G2}} = 150\,MW$$
D
$${P_{G1}} = 0\,MW;\,\,{P_{G2}} = 250\,MW$$
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given that: $$\,{V_{s1}} = {V_{s2}} = 1 + j0\,\,p.u,\,\, + ve\,\,$$ sequence impedance are $$\,{Z_{s1}} = {Z_{s2}} = 0.001 + j0.01\,\,p.u\,\,$$ and $${Z_L} = 0.006 + j\,0.06\,\,p.u,\,\,3\phi .\,\,\,$$ Base $$MVA=100,$$ voltage base $$=400$$ $$kV(L-L).$$
Nominal system frequency $$= 50$$ $$Hz.$$ The reference voltage for phase $$'a'$$ is defined as $$\,\,V\left( t \right) = {V_m}\,\cos \left( {\omega t} \right).\,\,\,$$ A symmetrical $$3\phi $$ fault occurs at centre of the line, i.e., at point $$'F'$$ at time 'to' the $$+ve$$ sequence impedance from source $${S_1}$$ to point $$'F'$$ equals $$(0.004 + j \,\,0.04)$$ $$p.u.$$ The wave form corresponding to phase $$'a'$$ fault current from bus $$X$$ reveals that decaying $$d.c.$$ offset current is $$-ve$$ and in magnitude at its maximum initial value. Assume that the negative sequence are equal to $$+ve$$ sequence impedances and the zero sequence $$(Z)$$ are $$3$$ times $$+ve$$ sequence $$(Z).$$

Instead of the three phase fault, if a single line to ground fault occurs on phase $$' a '$$ at point $$' F '$$ with zero fault impedance, then the $$rms$$ of the ac component of fault current $$\left( {{{\rm I}_x}} \right)$$ for phase $$'a'$$ will be

A
$$4.97$$ $$pu$$
B
$$7.0$$ $$pu$$
C
$$14.93$$ $$pu$$
D
$$29.85$$ $$pu$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given that: $$\,{V_{s1}} = {V_{s2}} = 1 + j0\,\,p.u,\,\, + ve\,\,$$ sequence impedance are $$\,{Z_{s1}} = {Z_{s2}} = 0.001 + j0.01\,\,p.u\,\,$$ and $${Z_L} = 0.006 + j\,0.06\,\,p.u,\,\,3\phi .\,\,\,$$ Base $$MVA=100,$$ voltage base $$=400$$ $$kV(L-L).$$
Nominal system frequency $$= 50$$ $$Hz.$$ The reference voltage for phase $$'a'$$ is defined as $$\,\,V\left( t \right) = {V_m}\,\cos \left( {\omega t} \right).\,\,\,$$ A symmetrical $$3\phi $$ fault occurs at centre of the line, i.e., at point $$'F'$$ at time 'to' the $$+ve$$ sequence impedance from source $${S_1}$$ to point $$'F'$$ equals $$(0.004 + j \,\,0.04)$$ $$p.u.$$ The wave form corresponding to phase $$'a'$$ fault current from bus $$X$$ reveals that decaying $$d.c.$$ offset current is $$-ve$$ and in magnitude at its maximum initial value. Assume that the negative sequence are equal to $$+ve$$ sequence impedances and the zero sequence $$(Z)$$ are $$3$$ times $$+ve$$ sequence $$(Z).$$

The $$rms$$ value of the ac component of fault current $$\,\left( {{{\rm I}_x}} \right)$$ will be

A
$$3.59$$ $$kA$$
B
$$5.07$$ $$kA$$
C
$$7.18$$ $$kA$$
D
$$10.15$$$$kA$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12