1
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The vector equation of two lines are

$$\begin{aligned} & \vec{r}=(1-t) \hat{\imath}+(t-2) \hat{\jmath}+(3-2 t) \hat{k} \\ & \vec{r}=(s+1) \hat{\imath}+(2 s-1) \hat{\jmath}-(2 s+1) \hat{k} \end{aligned}$$

Then the shortest distance between them is

A
$$\frac{4}{29}$$
B
$$\frac{4}{\sqrt{29}}$$
C
$$\frac{8}{29}$$
D
$$\frac{8}{\sqrt{29}}$$
2
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The place $$x-2 y+z=0$$ is parallel to the line

A
$$\frac{x-3}{4}=\frac{y-4}{5}=\frac{z-3}{6}$$
B
$$\frac{x-2}{1}=\frac{y-2}{-2}=\frac{z-3}{1}$$
C
$$\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{4}$$
D
$$\frac{x-4}{3}=\frac{y-5}{4}=\frac{z-6}{3}$$
3
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The lines $$\frac{x-1}{2}=\frac{y-4}{4}=\frac{z-2}{3}$$ and $$\frac{1-x}{1}=\frac{y-2}{5}=\frac{3-z}{a}$$ are perpendicular to each other, then $$a$$ equals to

A
$$-6$$
B
6
C
$$\frac{22}{3}$$
D
$$-\frac{22}{3}$$
4
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

If two lines $$L_1: \frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$L_2: \frac{x-3}{1}=\frac{y-k}{2}=z$$ intersect at a point, then $$2 k$$ is equal to

A
9
B
$$\frac{1}{2}$$
C
$$\frac{9}{2}$$
D
1
COMEDK Subjects
EXAM MAP