Match the items in Column I with their description in Column II
S.No. | Column I | S.No. | Column II |
---|---|---|---|
A | Kappa K | P | Intensive property. |
B | $$\mathrm{E_{cell}^0}$$ | Q | Extensive property. |
C | Molar conductivity | R | Decreases with decrease in concentration of both strong and weak electrolytes. |
D | $$\mathrm{\Delta G_{cell}}$$ | S | Increases with dilution. |
When Lead Storage battery is in the process of getting charged which one of the following reactions takes place?
The reaction taking place in a galvanic cell is as given
$$\mathrm{A}(\mathrm{s})+\mathrm{B}^{2+}\left(\mathbf{1} \mathbf{1} \mathbf{1 0} \mathbf{0}^{-\mathrm{M}} \mathbf{M}\right) \rightarrow \mathrm{B}_{(\mathrm{s})}+\mathrm{A}^{2+}(0.1 \mathrm{M}).$$
The emf of the cell is $$+2.651 \mathrm{~V}$$. If the standard emf of the cell is $$+2.71 \mathrm{~V}$$, what is the value of $$\mathrm{X}$$ ?
What will be the emf of the following cell at 25$$^\circ$$C?
Fe/Fe$$^{2+}$$ (0.001 M) | | H$$^+$$ (0.01 M) | H$$_2$$(g) (1 Bar) | Pt(s)
$$E_{(F{e^{2+}} /Fe)}^o = - 0.44$$ V; $$E_{({H^ + }/{H_2})}^o = - 0.00$$ V