1
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{a+x}-\sqrt{a}}{x \sqrt{a(a+x)}}$$ equals to

A
$$a^{-\frac{3}{2}}$$
B
$$\frac{1}{2 a^{\frac{3}{2}}}$$
C
$$\frac{1}{2}$$
D
$$2 a^{-\frac{3}{2}}$$
2
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \lim _\limits{x \rightarrow 0}\left(\frac{\sin a x}{\sin b x}\right)^k \text { equals } $$

A
$$ \left(\frac{b}{a}\right)^k $$
B
$$ \left(\frac{a}{b}\right)^k $$
C
$$ \frac{a}{b} $$
D
$$ \frac{b}{a} $$
3
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The value of $$\lim _\limits{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{2 x}$$ is equal to

A
$$\frac{a+b}{2}$$
B
$$\frac{a-b}{2}$$
C
$$\frac{e^{a b}}{2}$$
D
0
4
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x) = \left\{ {\matrix{ {2\sin x} & ; & { - \pi \le x \le {{ - \pi } \over 2}} \cr {a\sin x + b} & ; & { - {\pi \over 2} < x < {\pi \over 2}} \cr {\cos x} & ; & {{\pi \over 2} \le x \le \pi } \cr } } \right.$$ and it is continuous on $$[-\pi, \pi]$$, then

A
$$a=1$$ and $$b=1$$
B
$$a=-1$$ and $$b=-1$$
C
$$a=-1$$ and $$b=1$$
D
$$a=1$$ and $$b=-1$$
COMEDK Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12