1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0

Kiran purchased 3 pencils, 2 notebooks and one pen for ₹41. From the same shop Manasa purchased 2 pencils, one notebook and 2 pens for ₹ 29 , while Shreya purchased 3 pencils, 2 notebooks and 2 pens for ₹ 44. The above situation can be represented in matrix form as $A X=B$. Then $|\operatorname{adj} A|$ is equal to

A
9
B
$-$9
C
$-$1
D
1
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $Y=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $B$ equals :
A
$-X \cos \theta+Y \sin \theta$
B
$X \sin \theta+y \cos \theta$
C
$X \cos \theta-Y \sin \theta$
D
$X \cos \theta+Y \sin \theta$
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $(A I)^2=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ where I is the identity matrix then
A
$\alpha=a^2+b^2, \beta=2 a b$
B
$\alpha=2 a b, \beta=a^2+b^2$
C
$\alpha=a^2+b^2, \beta=a b$
D
$\alpha=a^2+b^2, \beta=a^2-b^2$
4
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Value of the determinant of a matrix $A$ of order $3 \times 3$ is 7 . Then the value of the determinant formed by the cofactors of matrix A is
A
7
B
49
C
14
D
343
COMEDK Subjects
EXAM MAP