For a given Linear Programming problem, the objective function is
$$z=3 x+2 y$$
Subject to constraints are
$$\begin{aligned} & 4 x+3 y \leq 60 \\ & x \geq 3 \\ & y \leq 2 x \\ & y \geq 0 \end{aligned}$$
P is one of the corner points of the feasible region for the given Linear Programming problem. Then the coordinate of P is
The maximum value of $$P=500 x+400 y$$ for the given constraints $$x+y \leq 200, \quad x \geq 20, \quad y \geq 4 x, \quad y \geq 0$$ is
$$ \text { The maximum value of } Z=3 x+4 y \text { for the given constraints } x+2 y \leq 76,2 x+y \leq 104, x \geq 0, y \geq 0 \text { is } $$
The minimum value of $$Z=150 x+200 y$$ for the given constraints
$$\begin{aligned} & 3 x+5 y \geq 30 \\ & x+y \geq 8 ; x \geq 0, y \geq 0 \text { is } \end{aligned}$$