Find value of Q from following equations.
(i) $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \Delta \mathrm{H}=\mathrm{QkJ}$
(ii) $\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(8)} \longrightarrow \mathrm{CO}_{2(8)} \Delta \mathrm{H}=-\mathrm{x} \mathrm{kJ}$
(iii) $\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~s})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \Delta \mathrm{H}=-\mathrm{ykJ}$
Which of the following statements is appropriate as per first law of thermodynamics?
Given that $$\mathrm{C}_{(\mathrm{g})}+4 \mathrm{H}_{(\mathrm{g})} \longrightarrow \mathrm{CH}_{4(\mathrm{g})} \Delta \mathrm{H}^{\circ}=-1665 \mathrm{~kJ}$$
What is bond energy per mole of $\mathrm{C}-\mathrm{H}$ bond?
If bond formation energy of $\mathrm{H}-\mathrm{H}$ bond is $-433 \mathrm{~kJ} \mathrm{~mol}^{-1}$ find the bond dissociation energy for 0.5 mole $H_{2(g)}$.