1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $Y=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $B$ equals :
A
$-X \cos \theta+Y \sin \theta$
B
$X \sin \theta+y \cos \theta$
C
$X \cos \theta-Y \sin \theta$
D
$X \cos \theta+Y \sin \theta$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $(A I)^2=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ where I is the identity matrix then
A
$\alpha=a^2+b^2, \beta=2 a b$
B
$\alpha=2 a b, \beta=a^2+b^2$
C
$\alpha=a^2+b^2, \beta=a b$
D
$\alpha=a^2+b^2, \beta=a^2-b^2$
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Value of the determinant of a matrix $A$ of order $3 \times 3$ is 7 . Then the value of the determinant formed by the cofactors of matrix A is
A
7
B
49
C
14
D
343
4
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ccc}4 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right]$ then $A^{-1}$ exists if :
A
$\lambda=2$
B
$\lambda=0$
C
$\lambda \neq 2$
D
$\lambda \neq-2$
COMEDK Subjects
EXAM MAP