1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $(A I)^2=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ where I is the identity matrix then
A
$\alpha=a^2+b^2, \beta=2 a b$
B
$\alpha=2 a b, \beta=a^2+b^2$
C
$\alpha=a^2+b^2, \beta=a b$
D
$\alpha=a^2+b^2, \beta=a^2-b^2$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Value of the determinant of a matrix $A$ of order $3 \times 3$ is 7 . Then the value of the determinant formed by the cofactors of matrix A is
A
7
B
49
C
14
D
343
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ccc}4 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right]$ then $A^{-1}$ exists if :
A
$\lambda=2$
B
$\lambda=0$
C
$\lambda \neq 2$
D
$\lambda \neq-2$
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & \cot ^{-1} \sqrt{3}\end{array}\right] \quad B=\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & -\tan ^{-1} \sqrt{3}\end{array}\right]$ and I is an identity matrix of order $2 \times 2$, then $A-B=$
A
2I
B
$\frac{1}{2}I$
C
I
D
0
COMEDK Subjects
EXAM MAP