NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

AIPMT 2010 Mains

MCQ (Single Correct Answer)
Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be
A
infinite
B
3 Joules
C
9 Joules
D
zero

Explanation

Since the ideal gas expands spontaneously into vacuum,, Pext = 0.

$$ \therefore $$ Work done is also zero.
2

AIPMT 2010 Mains

MCQ (Single Correct Answer)
Match List I (Equations) with List II (Type of processes) and select the correct option.

List I List II
Equations Type of processes
A. Kp > Q (i) Non- spontaneous
B. $$\Delta $$Go < RT ln Q (ii) Equilibrium
C. Kp = Q (iii) Spontaneous and
endothermic
D. T > $${{\Delta H} \over {\Delta S}}$$ (iv) Spontaneous
A
A - (i), B - (ii), C - (iii), D - (iv)
B
A - (iii), B - (iv), C - (ii), D - (i)
C
A - (iv), B - (i), C - (ii), D - (iii)
D
A - (ii), B - (i), C - (iv), D - (iii)

Explanation

When Kp > Q, rate of forward reaction > rate of backward reaction.

$$ \therefore $$ Reaction is spontaneous.

When $$\Delta $$Go < RT ln Q, $$\Delta $$Go is positive, reverse reaction is feasible, thus reaction is non spontaneous.

When Kp = Q, rate of forward reaction > rate of backward reaction.

$$ \therefore $$ Reaction is in equilibrium.

When T$$\Delta $$S > $$\Delta $$H, $$\Delta $$G will be negative only when $$\Delta $$H = +ve.

$$ \therefore $$ Reaction is spontaneous and endothermic.
3

AIPMT 2010 Prelims

MCQ (Single Correct Answer)
Standard entropies of X2, Y2 and XY3 are 60, 40 and 50 J K$$-$$1 mol$$-$$1 respectively. For the reaction

1/2X2 + 3/2Y2 $$\rightleftharpoons$$ XY3, $$\Delta $$H = $$-$$ 30 kJ,

to be at equilibrium, the temperature should be
A
750 K
B
1000 K
C
1250 K
D
500 K

Explanation

Given reaction is :

$${1 \over 2}$$X2 + $${3 \over 2}$$Y2 ā‡Œ XY3

We know,

$$\Delta $$So = $$\sum {S_{products}^o} - \sum {S_{reac\tan ts}^o} $$

= 50 - (30 + 60) = -40 J K-1 mol-1

At equilibrium $$\Delta $$Go = 0

$$\Delta $$Ho = T$$\Delta $$So

$$ \therefore $$ $$T = {{\Delta {H^o}} \over {\Delta {S^o}}}$$ = $${{ - 30 \times {{10}^3}} \over { - 40}}$$ = 750 K
4

AIPMT 2010 Prelims

MCQ (Single Correct Answer)
For an endothermic reaction, energy of activation is Ea and enthalpy of reaction is $$\Delta $$H (both of these in kJ/mol). Minimum value of Ea will be
A
less than $$\Delta $$H
B
equal to $$\Delta $$H
C
more than $$\Delta $$H
D
equal to zero

Explanation

Here,

Ea = activation energy of forward reaction

Eā€™a = activation energy of backward reaction

$$\Delta $$H = enthalpy of the reaction
From the given diagram it is clear that

Ea = Eā€™a + $$\Delta $$H

$$ \therefore $$ Ea > $$\Delta $$H

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12