The rate of appearance of bromine is related to the disappearance of bromide ion in the equation given below is:
$$\mathrm{BrO}_3^{-} \text {(aq) }+5 \mathrm{Br}^{-} \text {(aq) }+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_2(\mathrm{l})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{l})$$
The half-life for a zero order reaction is
The time required for $$80 \%$$ of a first order reaction is "$$y$$" times the half-life period of the same reaction. What is the value of "$$y$$"?
The rate constant for the reaction $$\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$$ at $$500 \mathrm{~K}$$ is given as $$0.004 \mathrm{~s}^{-1}$$. At what temperature will the rate constant become $$0.014 \mathrm{~s}^{-1}$$ ? $$\mathrm{E}_{\mathrm{a}}$$ for the reaction is $$18.231 \mathrm{~kJ}$$.