1
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The area (in sq units) of the minor segment bounded by the circle $$x^2+y^2=a^2$$ and the line $$x=\frac{a}{\sqrt{2}}$$ is

A
$$ \frac{a^2}{4}(\pi-2) $$
B
$$ \frac{a^2}{4}(\pi+2) $$
C
$$ \frac{\pi a^2}{4} $$
D
$$ \frac{a^2}{4}(3 \pi-2) $$
2
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The points of intersection of circles $$(x+1)^2+y^2=4$$ and $$(x-1)^2+y^2=9$$ are $$(a, \pm b)$$, then $$(a, b)$$ equals to

A
$$\left(1.25, \frac{3}{4} \sqrt{7}\right)$$
B
$$\left(-1.25, \frac{3}{4} \sqrt{7}\right)$$
C
$$(-1,2)$$
D
$$(1,3)$$
3
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The circle $$x^2+y^2+3 x-y+2=0$$ cuts an intercept on $$X$$-axis of length

A
3
B
4
C
2
D
1
4
COMEDK 2023 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$S \equiv x^2+y^2-2 x-4 y-4=0$$ and $$S^{\prime} \equiv x^2+y^2-4 x-2 y-16=0$$ are two circles the point $$(-2,-1)$$ lies

A
inside $$S^{\prime}$$ only
B
inside $$S$$ only
C
inside $$S$$ and $$S^{\prime}$$
D
outside $$S$$ and $$S^{\prime}$$
COMEDK Subjects
EXAM MAP