1
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

If $$(x-a)^2+(y-b)^2=c^2$$, where $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ are some constants, $$c>0$$ then $$\frac{\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2 y}{d x^2}}$$ is independent of

A
x
B
Constants a and b
C
y
D
Constant c
2
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The side of an equilateral triangle expands at the rate of $$\sqrt{3} \mathrm{~cm} / \mathrm{sec}$$. When the side is $$12 \mathrm{~cm}$$, the rate of increase of its area is

A
$$18 \mathrm{~cm}^2 / \mathrm{sec}$$
B
$$12 \mathrm{~cm}^2 / \mathrm{sec}$$
C
$$10 \mathrm{~cm}^2 / \mathrm{sec}$$
D
$$3 \sqrt{3} \mathrm{~cm}^2 / \mathrm{sec}$$
3
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=2 x^3+9 x^2+\lambda x+20$$ is a decreasing function of $$x$$ in the largest possible interval $$(-2,-1)$$, then $$\lambda$$ is equal to

A
$$-12$$
B
$$-6$$
C
$$12$$
D
$$6$$
4
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { The point on the curve } x^2=x y \text { which is closest to }(0,5) \text { is } $$

A
$$ \left(\frac{5}{2}, \frac{5}{2}\right) $$
B
(0, 5)
C
(0, 2)
D
$$ \left(-\frac{5}{2}, \frac{5}{2}\right) $$
COMEDK Subjects
EXAM MAP