1
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\log x+b x^2+a x, x \neq 0$$ has extreme values (or turning points) at $$x=-1$$ and $$x=2$$ then the values of $$\mathrm{a}$$ and $$\mathrm{b}$$ are

A
$$ a=\frac{1}{4} \quad b=-\frac{1}{2} $$
B
$$ a=\frac{1}{2} \quad b=-\frac{1}{4} $$
C
$$ a=\frac{1}{2} \quad b=\frac{1}{4} $$
D
$$ a=-\frac{1}{2} \quad b=-\frac{1}{4} $$
2
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

The dimensions of the largest rectangle of side $$x$$ and $$y$$ that can be inscribed in the right angled triangle of sides $$\mathrm{a}$$ and $$\mathrm{b}$$ is

COMEDK 2024 Afternoon Shift Mathematics - Application of Derivatives Question 22 English

A
$$ \frac{a}{2}, \frac{b}{2} $$
B
$$ \frac{3 a}{2}, \frac{3 b}{2} $$
C
$$ \frac{a}{4}, \frac{b}{4} $$
D
$$ a, b $$
3
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

If $$(x-a)^2+(y-b)^2=c^2$$, where $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ are some constants, $$c>0$$ then $$\frac{\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2 y}{d x^2}}$$ is independent of

A
x
B
Constants a and b
C
y
D
Constant c
4
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The side of an equilateral triangle expands at the rate of $$\sqrt{3} \mathrm{~cm} / \mathrm{sec}$$. When the side is $$12 \mathrm{~cm}$$, the rate of increase of its area is

A
$$18 \mathrm{~cm}^2 / \mathrm{sec}$$
B
$$12 \mathrm{~cm}^2 / \mathrm{sec}$$
C
$$10 \mathrm{~cm}^2 / \mathrm{sec}$$
D
$$3 \sqrt{3} \mathrm{~cm}^2 / \mathrm{sec}$$
COMEDK Subjects
EXAM MAP