1
COMEDK 2024 Morning Shift
+1
-0

$$\text { If the matrix } A=\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right) \text { then } A^{n+1}=$$

A
$$2\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right)$$
B
$$2 n\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right)$$
C
$$2^{n+1}\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right)$$
D
$$2^n\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right)$$
2
COMEDK 2024 Morning Shift
+1
-0

If $$\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=[0]$$ then x is equal to

A
2, 14
B
$$-2,-14$$
C
7, 4
D
2, $$-14$$
3
COMEDK 2023 Morning Shift
+1
-0

If $$A=\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$$, then $$A^{-1}$$ equals to

A
$$\left[\begin{array}{cc}2 & 1 \\ -3 / 2 & -1\end{array}\right]$$
B
$$\left[\begin{array}{cc}2 & -1 \\ -3 / 2 & 1\end{array}\right]$$
C
$$\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1\end{array}\right]$$
D
$$\left[\begin{array}{cc}-2 & -1 \\ 3 / 2 & 1\end{array}\right]$$
4
COMEDK 2023 Morning Shift
+1
-0

If $$A$$ is a matrix of order $$4 \operatorname{such}$$ that $$A(\operatorname{adj} A)=10 \mathrm{~I}$$, then $$|\operatorname{adj} A|$$ is equal to

A
10
B
100
C
1000
D
10000
EXAM MAP
Medical
NEET