$$ \text { A square matrix } P \text { satisfies } P^2=I-P \text { where } I \text { is identity matrix. If } P^n=5 I-8 P \text {, then } n \text { is equal to } $$
If $$A=\left[\begin{array}{lll}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right] \quad B^{-1}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$$ then $$(A B)^{-1}$$ is equal to
$$ \text { If } P=\left[\begin{array}{lll} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{array}\right] \text { is the adjoint of a } 3 \times 3 \text { matrix } A \text { and }|A|=4 \text { then } \alpha \text { is equal to } $$
If $$A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$ then the inverse of $$(A I)^t$$ (where $$\mathrm{I}$$ is an identity matrix) is