1
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{d x}{(x+2)\left(x^2+1\right)}=p \log |x+2|+q \log \left|x^2+1\right|+r \tan ^{-1} x+c$ then $p+q+r=$
A
$\frac{2}{5}$
B
$\frac{1}{2}$
C
$\frac{7}{10}$
D
16
2
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { The value of } \int \frac{d x}{\sqrt{2 x-x^2}} \text { is } $$

A
$$\sin ^{-1}(x-1)+C$$
B
$$\sin ^{-1}(2 x-1)+C$$
C
$$\sin ^{-1}(x+1)+C$$
D
$$-\sqrt{2 x-x^2}+C$$
3
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \int e^x\left[\frac{x^2+1}{(x+1)^2}\right] d x \quad \text { is equal to } $$

A
$$ -\frac{e^x}{x+1}+C $$
B
$$ e^x\left(\frac{x-1}{x+1}\right)+C $$
C
$$ \frac{e^x}{x+1}+C $$
D
$$ \frac{x e^x}{x+1}+C $$
4
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

$$ \int \frac{f^{\prime}(x)}{f(x) \log (f(x))} d x \text { is equal to } $$

A
$$ f(x) \log f(x)+C $$
B
$$ \frac{1}{\log (\log f(x))}+C $$
C
$$ \frac{f(x)}{\log f(x)}+C $$
D
$$ \log (\log f(x))+C $$
COMEDK Subjects
EXAM MAP