1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the length of the diagonal of a square is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{sec}$. What is the rate of increase of its area when the side is $\frac{15}{\sqrt{2}} \mathrm{~cm}$ ?
A
$3 \mathrm{~cm}^2 / \mathrm{sec}$
B
$0.15 \mathrm{~cm}^2 / \mathrm{sec}$
C
$1.5 \mathrm{~cm}^2 / \mathrm{sec}$
D
$3 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
The function $y=\frac{\log x}{x^3}$ is strictly increasing function for
A
$0< x< e^{\frac{1}{3}}$
B
$x>e^{\frac{1}{3}}$
C
$x< 2$
D
$x < e^{\frac{1}{3}}$
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The curve $4 y=3 x^4-2 x^2$ attains ----------- at the points $x=-\frac{1}{\sqrt{3}}$ and $x=\frac{1}{\sqrt{3}}$
A
both minimum values
B
a maximum value and a minimum value respectively
C
a minimum value and a maximum value respectively
D
both maximum values
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
$x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ represents the equation of a curve. If $\theta$ changes at a constant rate $k$ then the rate of change of the slope of the tangent to the curve at $\theta=\frac{\pi}{3}$ is
A
$2 k$
B
$\frac{k}{3}$
C
$\frac{2 k}{\sqrt{3}}$
D
$\frac{2 k}{3}$
COMEDK Subjects
EXAM MAP