1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
A man is moving away from a tower 41.6 m high at a rate of $2 \mathrm{~m} / \mathrm{s}$. If the eyelevel of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower is :
A
$-\frac{4}{125} \mathrm{rad} / \mathrm{sec}$
B
$\frac{4}{625} \mathrm{rad} / \mathrm{sec}$
C
$-\frac{2}{125} \mathrm{rad} / \mathrm{sec}$
D
$\frac{1}{625} \mathrm{rad} / \mathrm{sec}$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If a quadratic function in $x$ has the value 19 when $x=1$ and has a maximum value 20 when $x=2$, then the function is
A
$f(x)=x^2-4 x+16$
B
$f(x)=-x^2+5 x+16$
C
$f(x)=x^2+4 x+16$
D
$f(x)=-x^2+4 x+16$
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the length of the diagonal of a square is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{sec}$. What is the rate of increase of its area when the side is $\frac{15}{\sqrt{2}} \mathrm{~cm}$ ?
A
$3 \mathrm{~cm}^2 / \mathrm{sec}$
B
$0.15 \mathrm{~cm}^2 / \mathrm{sec}$
C
$1.5 \mathrm{~cm}^2 / \mathrm{sec}$
D
$3 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$
4
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
The function $y=\frac{\log x}{x^3}$ is strictly increasing function for
A
$0< x< e^{\frac{1}{3}}$
B
$x>e^{\frac{1}{3}}$
C
$x< 2$
D
$x < e^{\frac{1}{3}}$
COMEDK Subjects
EXAM MAP