1
GATE CE 2025 Set 2
MCQ (Single Correct Answer)
+1
-0.33

For the matrix $[\mathrm{A}]$ given below, the transpose is $\qquad$ .

$$ [A]=\left[\begin{array}{lll} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{array}\right] $$

A
$\left[\begin{array}{lll}2 & 1 & 4 \\ 3 & 4 & 3 \\ 4 & 5 & 2\end{array}\right]$
B
$\left[\begin{array}{lll}4 & 3 & 2 \\ 5 & 4 & 1 \\ 2 & 3 & 4\end{array}\right]$
C
$\left[\begin{array}{lll}4 & 2 & 3 \\ 5 & 1 & 4 \\ 2 & 4 & 3\end{array}\right]$
D
$\left[\begin{array}{lll}2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2\end{array}\right]$
2
GATE CE 2025 Set 1
MCQ (Single Correct Answer)
+1
-0.33

Suppose $\lambda$ is an eigenvalue of matrix A and $x$ is the corresponding eigenvector. Let $x$ also be an eigenvector of the matrix $\mathrm{B}=\mathrm{A}-2 \mathrm{I}$, where I is the identity matrix. Then, the eigenvalue of B corresponding to the eigenvector $x$ is equal to

A
$\lambda$
B
$\lambda+2$
C
$2 \lambda$
D
$\lambda-2$
3
GATE CE 2025 Set 1
MCQ (Single Correct Answer)
+1
-0.33

Let $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 3 \\ -2 & -3\end{array}\right]$ and $b=\left[\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right]$. For $\mathrm{Ax}=\mathrm{b}$ to be solvable, which one of the following options is the correct condition on $b_1, b_2$ and $b_3$ :

A
$b_1+b_2+b_3=1$
B
$3 b_1+b_2+2 b_3=0$
C
$b_1+3 b_2+b_3=2$
D
$b_1+b_2+b_3=2$
4
GATE CE 2024 Set 2
MCQ (Single Correct Answer)
+1
-0.33

The statements P and Q are related to matrices A and B, which are conformable for both addition and multiplication.

P: $(A + B)^T = A^T + B^T$

Q: $(AB)^T = B^T A^T$

Which one of the following options is CORRECT?

A

P is TRUE and Q is FALSE

B

Both P and Q are TRUE

C

P is FALSE and Q is TRUE

D

Both P and Q are FALSE

GATE CE Subjects
EXAM MAP