Transform Theory · Engineering Mathematics · GATE CE
Start PracticeMarks 1
GATE CE 2022 Set 1
The Fourier cosine series of a function is given by :
$$f(x) = \sum\limits_{n = 0}^\infty {{f_n}\cos nx} $$
For f(x) = cos4x, the numerical value of ...
GATE CE 2011
Given two continuous time signals $$x\left( t \right) = {e^{ - t}}$$ and $$y\left( t \right) = {e^{ - 2t}}$$ which exists for $$t>0$$ then the conv...
GATE CE 2009
Laplace transform of $$f\left( x \right) = \cos \,h\left( {ax} \right)$$ is
GATE CE 2005
The Laplace transform of a function $$f(t)$$ is
$$$F\left( s \right) = {{5{s^2} + 23s + 6} \over {s\left( {{s^2} + 2s + 2} \right)}}$$$
As $$t \to \...
GATE CE 2004
A delayed unit step function is defined as
$$$u\left( {t - a} \right) = \left\{ {\matrix{
{0,} & {t < a} \cr
{1,} & {t \ge a} \cr...
GATE CE 2003
If $$L$$ denotes the laplace transform of a function, $$L\left\{ {\sin \,\,at} \right\}$$ will be equal to
GATE CE 2001
The inverse Laplace transform of $$1/\left( {{s^2} + 2s} \right)$$ is
GATE CE 1999
The Laplace transform of the function
$$\eqalign{
& f\left( t \right) = k,\,0 < t < c \cr
& \,\,\,\,\,\,\,\,\, = 0,\,c < t <...
GATE CE 1998
The Laplace Transform of a unit step function $${u_a}\left( t \right),$$ defined as
$$\matrix{
{{u_a}\left( t \right) = 0} & {for\,\,\,t < ...
GATE CE 1998
$${\left( {s + 1} \right)^{ - 2}}$$ is laplace transform of
GATE CE 1995
The inverse Laplace transform of $${{\left( {s + 9} \right)} \over {\left( {{s^2} + 6s + 13} \right)}}$$ is
Marks 2
GATE CE 2011
If $$F\left( s \right) = L\left\{ {f\left( t \right)} \right\} = {{2\left( {s + 1} \right)} \over {{s^2} + 4s + 7}}$$ then the initial and final value...
GATE CE 2005
Laplace transform of $$f\left( t \right) = \cos \left( {pt + q} \right)$$ is
GATE CE 2002
The Laplace transform of the following function is
$$$f\left( t \right) = \left\{ {\matrix{
{\sin t} & {for\,\,0 \le t \le \pi } \cr
0 &a...
GATE CE 2002
Using Laplace transforms, solve $${a \over {{s^2} - {a^2}}}\,\,\left( {{d^2}y/d{t^2}} \right) + 4y = 12t\,\,$$
given that $$y=0$$ and $$dy/dt=9$$ at ...
GATE CE 2000
Let $$F\left( s \right) = L\left[ {f\left( t \right)} \right]$$ denote the Laplace transform of the function $$f(t)$$. Which of the following statemen...
GATE CE 1996
Using Laplace transform, solve the initial value problem $$9{y^{11}} - 6{y^1} + y = 0$$
$$y\left( 0 \right) = 3$$ and $${y^1}\left( 0 \right) = 1,$$ ...