Limit State of Collapse Shear · Reinforced Cement Concrete · GATE CE

Start Practice

Marks 1

Marks 2

1
A launched (varying depth) reinforced concrete beam is simply supported at both ends, as shown in the figure. The beam is subjected to a uniformly distributed factored load of intensity $$10$$ $$kN/m.$$ The design shear force (expressed in $$kN$$) at the section $$X$$-$$X$$ of the beam is ____________ GATE CE 2016 Set 2 Reinforced Cement Concrete - Limit State of Collapse Shear Question 4 English
GATE CE 2016 Set 2
2
A rectangular beam of width $$(b)$$ $$230$$ $$mm$$ and effective depth $$(d)$$ $$450$$ $$mm$$ is reinforced with four bars of $$12$$ $$mm$$ diameter. The grade of concrete is $$M20$$ and grade of steel is $$Fe500.$$ Given that for $$M20$$ grade of concrete the ultimate shear strength, $${\tau _{uc}} = 0.36\,\,N/m{m^2}$$ for steel percentage, $$p = 0.25,$$ and $${\tau _{uc}} = 0.48\,\,N/m{m^2}$$ for $$p = 0.50.$$ For a factored shear force of $$45$$ $$kN,$$ the diameter (in $$mm$$) of $$Fe500$$ steel two legged stirrups to be used at spacing of $$375$$ $$mm,$$ should be
GATE CE 2014 Set 1
3
Consider two $$RCC$$ beams, $$P$$ and $$Q$$, each having the section $$400$$ $$mm$$ $$ \times \,\,750\,\,mm$$ (effective depth, $$d=750$$ $$mm$$) made with concrete having a $${\tau _{c\max }} = 2.1\,\,N/m{m^2}.$$ For the reinforcement provided and the grade of concrete used, it may be assumed that the $$\,{\tau _c} = 0.75\,\,N/m{m^2}.$$ The design shear in beam $$P$$ is $$400$$ $$kN$$ and in beam $$Q$$ is $$750$$ $$kN.$$ Considering the provisions of $$IS$$ $$456$$-$$2000.$$

Which of the following statements is TRUE?

GATE CE 2011
4
A reinforced concrete beam of rectangular cross section of breadth $$230$$ $$mm$$ and effective depth $$400$$ $$mm$$ is subjected to maximum factored shear force of $$120$$ $$kN.$$ The grades of concrete, main steel and stirrup steel are $$M20,$$ $$Fe415$$ and $$Fe250$$ respectively. For the area of main steel provided, the design shear strength τc is per $$IS: 456$$-$$2000$$ is $$0.48$$ $$N/m{m^2}.$$ The beam is designed for collapse limit state.

The spacing $$(mm)$$ of $$2$$-legged $$8$$ $$mm$$ stirrups to be provided is

GATE CE 2008
5
A reinforced concrete beam of rectangular cross section of breadth $$230$$ $$mm$$ and effective depth $$400$$ $$mm$$ is subjected to maximum factored shear force of $$120$$ $$kN.$$ The grades of concrete, main steel and stirrup steel are $$M20,$$ $$Fe415$$ and $$Fe250$$ respectively. For the area of main steel provided, the design shear strength τc is per $$IS: 456$$-$$2000$$ is $$0.48$$ $$N/m{m^2}.$$ The beam is designed for collapse limit state.

In addition, the beam is subjected to a torque whose factored value is $$10.90$$ $$kN$$-$$m.$$ The stirrups have to be provided to carry a shear $$(kN)$$ equal to

GATE CE 2008
6
A simply supported beam of a beam and slab system, rests on a support of width $$450$$ $$mm.$$ The clear span of the beam is $$10.0$$ $$m.$$ The thickness of the slab is $$120$$ $$mm.$$ The depth of the beam below the slab is $$480$$ $$mm$$ and the width of the beam is $$250$$ $$mm.$$ The beam is reinforced with one row of $$32$$ $$mm$$ diameter steel rods. The total load including the super imposed dead load, live load and its own weight is $$25.0$$ $$kN/m$$ at service stage. Compute the maximum nominal design shear stress in the concrete _______________
GATE CE 1997

Marks 5

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12