Differential Equations · Engineering Mathematics · GATE CE

Start Practice

Marks 1

1

A partial differential equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

is defined for the two-dimensional field $T: T(x, y)$, inside a planar square domain of size 2 m × 2 m. Three boundary edges of the square domain are maintained at value $T = 50$, whereas the fourth boundary edge is maintained at $T = 100$.

The value of $T$ at the center of the domain is

GATE CE 2024 Set 2
2

Consider two Ordinary Differential Equations (ODEs):

P: $ \dfrac{dy}{dx} = \dfrac{x^4 + 3x^2 y^2 + 2y^4}{x^3 y} $

Q: $ \dfrac{dy}{dx} = -\dfrac{y^2}{x^2} $

Which one of the following options is CORRECT?

GATE CE 2024 Set 2
3

The second-order differential equation in an unknown function $$u : u(x, y)$$ is defined as $$\frac{\partial^2 u}{\partial x^2}= 2$$

Assuming $$g : g(x)$$, $$f : f(y)$$, and $$h : h(y)$$, the general solution of the above differential equation is

GATE CE 2024 Set 1
4

For the following partial differential equation,

$x \frac{\partial^2 f}{\partial x^2} + y \frac{\partial^2 f}{\partial y^2} = \frac{x^2 + y^2}{2}$

which of the following option(s) is/are CORRECT?

GATE CE 2024 Set 1
5
The steady-state temperature distribution in a square plate ABCD is governed by the 2-dimensional Laplace equation. The side AB is kept at a temperature of 100°C and the other three sides are kept at a temperature of 0°C. Ignoring the effect of discontinuities in the boundary conditions at the corners, the steady-state temperature at the center of the plate is obtained as T0°C. Due to symmetry, the steady-state temperature at the center will be same (T0°C), when any one side of the square is kept at a temperature of 100°C and the remaining three sides are kept at a temperature of 0°C. Using the principle of superposition, the value of T0 is _________ (rounded off to two decimal places).
GATE CE 2023 Set 2
6
In the differential equation $\frac{dy}{dx}+\alpha\ x\ y =0, \alpha$ is a positive constant. If y = 1.0 at x = 0.0, and y = 0.8 at x = 1.0, the value of α is ________ (rounded off to three decimal places).
GATE CE 2023 Set 1
7

The function f(x, y) satisfies the Laplace equation

$$\Delta$$2f(x, y) = 0

on a circular domain of radius r = 1 with its center at point P with coordinates x = 0, y = 0. The value of this function on the circular boundary of this domain is equal to 3. The numerical value of f/(0, 0) is :

GATE CE 2022 Set 2
8

Consider the following expression:

z = sin(y + it) + cos(y $$-$$ it)

where z, y, and t are variables, and $$i = \sqrt { - 1} $$ is a complex number. The partial differential equation derived from the above expression is

GATE CE 2022 Set 1
9

For the equation

$${{{d^3}y} \over {d{x^3}}} + x{\left( {{{dy} \over {dx}}} \right)^{3/2}} + {x^2}y = 0$$

the correct description is

GATE CE 2022 Set 1
10
The solution of the equation $$\,{{dQ} \over {dt}} + Q = 1$$ with $$Q=0$$ at $$t=0$$ is
GATE CE 2017 Set 1
11
Consider the following second $$-$$order differential equation : $$\,y''\,\, - 4y' + 3y = 2t - 3{t^2}\,\,\,$$
The particular solution of the differential equation is
GATE CE 2017 Set 1
12
Consider the following partial differential equation: $$\,\,3{{{\partial ^2}\phi } \over {\partial {x^2}}} + B{{{\partial ^2}\phi } \over {\partial x\partial y}} + 3{{{\partial ^2}\phi } \over {\partial {y^2}}} + 4\phi = 0\,\,$$ For this equation to be classified as parabolic, the value of $${B^2}$$ must be ____________.
GATE CE 2017 Set 1
13
The type of partial differential equation $${{{\partial ^2}p} \over {\partial {x^2}}} + {{{\partial ^2}p} \over {\partial {y^2}}} + 3{{{\partial ^2}p} \over {\partial x\partial y}} + 2{{\partial p} \over {\partial x}} - {{\partial p} \over {\partial y}} = 0$$ is
GATE CE 2016 Set 1
14
The integrating factor for the differential equation $${{dP} \over {dt}} + {k_2}\,P = {k_1}{L_0}{e^{ - {k_1}t}}\,\,$$ is
GATE CE 2014 Set 2
15
The solution of the differential equation $${{dy} \over {dx}} + {y \over x} = x$$ with the condition that $$y=1$$ at $$x=1$$ is
GATE CE 2011
16
The order and degree of a differential equation $${{{d^3}y} \over {d{x^3}}} + 4\sqrt {{{\left( {{{dy} \over {dx}}} \right)}^3} + {y^2}} = 0$$ are respectively
GATE CE 2010
17
The partial differential equation that can be formed from $$z=ax+by+ab$$ has the form $$\,\,\left( {p = {{\partial z} \over {\partial x}},q = {{\partial z} \over {\partial y}}} \right)\,\,$$
GATE CE 2010
18
Solution of the differential equation $$3y{{dy} \over {dx}} + 2x = 0$$ represents a family of
GATE CE 2009
19
The degree of the differential equation $$\,{{{d^2}x} \over {d{t^2}}} + 2{x^3} = 0\,\,$$ is
GATE CE 2007
20
A body originally at $${60^ \circ }$$ cools down to $$40$$ in $$15$$ minutes when kept in air at a temperature of $${25^ \circ }$$c. What will be the temperature of the body at the and of $$30$$ minutes?
GATE CE 2007
21
The solution of the differential equation $$\,{x^2}{{dy} \over {dx}} + 2xy - x + 1 = 0\,\,\,$$ given that at $$x=1,$$ $$y=0$$ is
GATE CE 2006
22
The number of boundary conditions required to solve the differential equation $$\,\,{{{\partial ^2}\phi } \over {\partial {x^2}}} + {{{\partial ^2}\phi } \over {\partial {y^2}}} = 0\,\,$$ is
GATE CE 2001
23
If $$c$$ is a constant, then the solution of $${{dy} \over {dx}} = 1 + {y^2}$$ is
GATE CE 1999
24
For the differential equation $$f\left( {x,y} \right){{dy} \over {dx}} + g\left( {x,y} \right) = 0\,\,$$ to be exact is
GATE CE 1997
25
The differential equation $${y^{11}} + {\left( {{x^3}\,\sin x} \right)^5}{y^1} + y = \cos {x^3}\,\,\,\,$$ is
GATE CE 1995
26
The necessary & sufficient condition for the differential equation of the form $$\,\,M\left( {x,y} \right)dx + N\left( {x,y} \right)dy = 0\,\,$$ to be exact is
GATE CE 1994

Marks 2

1

A 2 m × 2 m tank of 3 m height has inflow, outflow and stirring mechanisms. Initially, the tank was half-filled with fresh water. At $ t = 0 $, an inflow of a salt solution of concentration 5 g/ $ m^3 $ at the rate of 2 litre/s and an outflow of the well stirred mixture at the rate of 1 litre/s are initiated. This process can be modelled using the following differential equation:

$$ \frac{dm}{dt} + \frac{m}{6000 + t} = 0.01 $$

where $ m $ is the mass (grams) of the salt at time $ t $ (seconds). The mass of the salt (in grams) in the tank at 75% of its capacity is ______________ (rounded off to 2 decimal places).

GATE CE 2024 Set 1
2

The solution of the differential equation

$\rm \frac{d^3y}{dx^3}-5.5\frac{d^2y}{dx^2}+9.5\frac{dy}{dx}-5y=0$

is expressed as 𝑦 = 𝐶1𝑒2.5𝑥 + 𝐶2𝑒𝛼𝑥 + 𝐶3𝑒𝛽𝑥 , where 𝐶1, 𝐶2, 𝐶3, 𝛼, and 𝛽 are constants, with α and β being distinct and not equal to 2.5. Which of the following options is correct for the values of 𝛼 and 𝛽?

GATE CE 2023 Set 2
3

The differential equation,

$\rm \frac{du}{dt}+2tu^2=1,$

is solved by employing a backward difference scheme within the finite difference framework. The value of 𝑢 at the (𝑛 − 1) th time-step, for some 𝑛, is 1.75. The corresponding time (t) is 3.14 s. Each time step is 0.01 s long. Then, the value of (un - un -1) _________ is (round off to three decimal places). 

GATE CE 2023 Set 1
4

Consider the differential equation

$${{dy} \over {dx}} = 4(x + 2) - y$$

For the initial condition y = 3 at x = 1, the value of y at x = 1.4 obtained using Euler's method with a step-size of 0.2 is ________. (round off to one decimal place)

GATE CE 2022 Set 1
5
The solution of the partial differential equation $${{\partial u} \over {\partial t}} = \alpha {{{\partial ^2}u} \over {\partial {x^2}}}$$ is of the form
GATE CE 2016 Set 1
6
Consider the following differential equation
$$x\left( {y\,dx + x\,dy} \right)\cos \left( {{y \over x}} \right)$$
$$\,\,\,\,\,\,\,\,\,\, = y\left( {x\,dy - y\,dx} \right)\sin \left( {{y \over x}} \right)$$

Which of the following is the solution of the above equation ($$C$$ is an arbitrary constant)

GATE CE 2015 Set 1
7
Consider the following second order linear differential equation $${{{d^2}y} \over {d{x^2}}} = - 12{x^2} + 24x - 20$$
The boundary conditions are: at $$x=0, y=5$$ and at $$x=2, y=21$$
The value of $$y$$ at $$x=1$$ is
GATE CE 2015 Set 2
8
Water is following at a steady rate through a homogeneous and saturated horizontal soil strip of $$10$$m length. The strip is being subjected to a constant water head $$(H)$$ of $$5$$m at the beginning and $$1$$m at the end. If the governing equation of flow in the soil strip is $$\,\,{{{d^2}H} \over {d{x^2}}} = 0\,\,$$ (where $$x$$ is the distance along the soil strip), the value of $$H$$ (in m) at the middle of the strip is _______.
GATE CE 2014 Set 2
9
The solution of the ordinary differential equation $${{dy} \over {dx}} + 2y = 0$$ for the boundary condition, $$y=5$$ at $$x=1$$ is
GATE CE 2012
10
The solution to the ordinary differential equation $${{{d^2}y} \over {d{x^2}}} + {{dy} \over {dx}} - 6y = 0\,\,\,$$ is
GATE CE 2010
11
The solution for the differential equation $$\,{{d\,y} \over {d\,x}} = {x^2}\,y$$ with the condition that $$y=1$$ at $$x=0$$ is
GATE CE 2007
12
Transformation to linear form by substituting $$v = {y^{1 - n}}$$ of the equation $${{dy} \over {dt}} + p\left( t \right)y = q\left( t \right){y^n},\,\,n > 0$$ will be
GATE CE 2005
13
The solution $${{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} + 17y = 0;$$ $$y\left( 0 \right) = 1,{\left( {{{d\,y} \over {d\,x}}} \right)_{x = {\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}}} = 0\,\,$$ in the range $$0 < x < {\pi \over 4}$$ is given by
GATE CE 2005
14
Biotransformation of an organic compound having concentration $$(x)$$ can be modeled using an ordinary differential equation $$\,{{d\,x} \over {dt}} + k\,{x^2} = 0,$$ where $$k$$ is the reaction rate constant. If $$x=a$$ at $$t=0$$ then solution of the equation is
GATE CE 2004
15
The solution for the following differential equation with boundary conditions $$y(0)=2$$ and $$\,\,{y^1}\left( 1 \right) = - 3$$ is where $${{{d^2}y} \over {d{x^2}}} = 3x - 2$$
GATE CE 2001
16
Solve $${{{d^4}y} \over {d{x^4}}} - y = 15\,\cos \,\,2x$$
GATE CE 1998
17
The differential equation $${{dy} \over {dx}} + py = Q,$$ is a linear equation of first order only if,
GATE CE 1997
18
Solve $${{{d^4}v} \over {d{x^4}}} + 4{\lambda ^4}v = 1 + x + {x^2}$$
GATE CE 1996
19
The solution of a differential equation $${y^{11}} + 3{y^1} + 2y = 0$$ is of the form
GATE CE 1995
20
The differential equation $${{{d^4}y} \over {d{x^4}}} + P{{{d^2}y} \over {d{x^2}}} + ky = 0\,\,$$ is
GATE CE 1994
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12