1
GATE CE 2025 Set 1
MCQ (Single Correct Answer)
+1
-0.33

Which one of the following options is the correct Fourier series of the periodic function $f(x)$ described below:

$$ f(x)=\left\{\begin{array}{cl} 0 & \text { if }-2 < x < -1 \\ 2 k & \text { if }-1 < x < 1 \text {; period }=4 \\ 0 & \text { if }-1 < x < 2 \end{array}\right. $$

A
$f(x)=\frac{k}{2}+\frac{2 k}{\pi}\left(\cos \frac{\pi}{2} x-\frac{1}{3} \cos \frac{3 \pi}{2} x+\frac{1}{5} \cos \frac{5 \pi}{2} x-+\ldots\right)$
B
$f(x)=\frac{k}{2}+\frac{2 k}{\pi}\left(\sin \frac{\pi}{2} x-\frac{1}{3} \sin \frac{3 \pi}{2} x+\frac{1}{5} \sin \frac{5 \pi}{2} x-+\ldots\right)$
C
$f(x)=k+\frac{4 k}{\pi}\left(\cos \frac{\pi}{2} x-\frac{1}{3} \cos \frac{3 \pi}{2} x+\frac{1}{5} \cos \frac{5 \pi}{2} x-+\ldots\right)$
D
$f(x)=k+\frac{4 k}{\pi}\left(\sin \frac{\pi}{2} x-\frac{1}{3} \sin \frac{3 \pi}{2} x+\frac{1}{5} \sin \frac{5 \pi}{2} x-+\ldots\right)$
2
GATE CE 2022 Set 1
Numerical
+1
-0

The Fourier cosine series of a function is given by :

$$f(x) = \sum\limits_{n = 0}^\infty {{f_n}\cos nx} $$

For f(x) = cos4x, the numerical value of (f4 + f5) is _________. (round off to three decimal places)

Your input ____
3
GATE CE 2011
MCQ (Single Correct Answer)
+1
-0.3
Given two continuous time signals $$x\left( t \right) = {e^{ - t}}$$ and $$y\left( t \right) = {e^{ - 2t}}$$ which exists for $$t>0$$ then the convolution $$z\left( t \right) = x\left( t \right) * y\left( t \right)$$ is ____________.
A
$${e^{ - t}} - {e^{ - 2t}}$$
B
$${e^{ - 2t}}$$
C
$${e^{ - t}}$$
D
$${e^{ - t}} + {e^{ - 3t}}$$
4
GATE CE 2009
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of $$f\left( x \right) = \cos \,h\left( {ax} \right)$$ is
A
$${a \over {{s^2} - {a^2}}}$$
B
$${s \over {{s^2} - {a^2}}}$$
C
$${a \over {{s^2} + {a^2}}}$$
D
$${s \over {{s^2} + {a^2}}}$$
GATE CE Subjects
EXAM MAP