1
GATE CE 2001
+1
-0.3
The product $$\left[ P \right]\,\,{\left[ Q \right]^T}$$ of the following two matrices $$\left[ P \right]\,$$ and $$\left[ Q \right]\,$$
where $$\left[ P \right]\,\, = \left[ {\matrix{ 2 & 3 \cr 4 & 5 \cr } } \right],\,\,\left[ Q \right] = \left[ {\matrix{ 4 & 8 \cr 9 & 2 \cr } } \right]$$ is
A
$$\left[ {\matrix{ {32} & {24} \cr {56} & {46} \cr } } \right]$$
B
$$\left[ {\matrix{ {46} & {56} \cr {24} & {32} \cr } } \right]$$
C
$$\left[ {\matrix{ {35} & {22} \cr {61} & {42} \cr } } \right]$$
D
$$\left[ {\matrix{ {32} & {56} \cr {24} & {46} \cr } } \right]$$
2
GATE CE 2001
+1
-0.3
The determinant of the following matrix $$\left[ {\matrix{ 5 & 3 & 2 \cr 1 & 2 & 6 \cr 3 & 5 & {10} \cr } } \right]$$
A
$$-76$$
B
$$-28$$
C
$$28$$
D
$$72$$
3
GATE CE 2000
+1
-0.3
Consider the following two statements.

$$(I)$$ The maximum number of linearly independent column vectors of a matrix $$A$$ is called the rank of $$A.$$

$$(II)$$ If $$A$$ is $$nxn$$ square matrix then it will be non-singular if rank of $$A=n$$

A
Both the statements are false
B
Both the statements are true
C
$$(I)$$ is true but $$(II)$$ is false
D
$$(I)$$ is false but $$(II)$$ is true
4
GATE CE 2000
+1
-0.3
If $$A,B,C$$ are square matrices of the same order then $${\left( {ABC} \right)^{ - 1}}$$ is equal be
A
$${C^{ - 1}}\,{A^{ - 1}}\,{B^{ - 1}}$$
B
$${C^{ - 1}}\,{B^{ - 1}}\,{A^{ - 1}}$$
C
$${A^{ - 1}}\,{B^{ - 1}}\,{C^{ - 1}}$$
D
$${A^{ - 1}}\,{C^{ - 1}}\,{B^{ - 1}}$$
GATE CE Subjects
Construction Material and Management
Geomatics Engineering Or Surveying
Engineering Mechanics
Transportation Engineering
Environmental Engineering
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
General Aptitude
EXAM MAP
Medical
NEET