1
GATE CE 2024 Set 2
MCQ (More than One Correct Answer)
+2
-0

Three vectors $\overrightarrow{p}$, $\overrightarrow{q}$, and $\overrightarrow{r}$ are given as

$ \overrightarrow{p} = \hat{i} + \hat{j} + \hat{k}$

$ \overrightarrow{q} = \hat{i} + 2\hat{j} + 3\hat{k}$

$ \overrightarrow{r} = 2\hat{i} + 3\hat{j} + 4\hat{k}$

Which of the following is/are CORRECT?

A

$ \overrightarrow{p} \times (\overrightarrow{q} \times \overrightarrow{r}) + \overrightarrow{q} \times (\overrightarrow{r} \times \overrightarrow{p}) + \overrightarrow{r} \times (\overrightarrow{p} \times \overrightarrow{q}) = \overrightarrow{0}$

B

$ \overrightarrow{p} \times (\overrightarrow{q} \times \overrightarrow{r}) = (\overrightarrow{p} \cdot \overrightarrow{r}) \overrightarrow{q} - (\overrightarrow{p} \cdot \overrightarrow{q}) \overrightarrow{r}$

C

$ \overrightarrow{p} \times (\overrightarrow{q} \times \overrightarrow{r}) = (\overrightarrow{p} \times \overrightarrow{q}) \times \overrightarrow{r}$

D

$ \overrightarrow{r} \cdot (\overrightarrow{p} \times \overrightarrow{q}) = (\overrightarrow{q} \times \overrightarrow{p}) \cdot \overrightarrow{r}$

2
GATE CE 2024 Set 1
MCQ (Single Correct Answer)
+2
-0.833

A vector field $\vec{p}$ and a scalar field $r$ are given by:

$\vec{p} = (2x^2 - 3xy + z^2) \hat{i} + (2y^2 - 3yz + x^2) \hat{j} + (2z^2 - 3xz + x^2) \hat{k}$

$r = 6x^2 + 4y^2 - z^2 - 9xyz - 2xy + 3xz - yz$

Consider the statements P and Q:

P: Curl of the gradient of the scalar field $r$ is a null vector.

Q: Divergence of curl of the vector field $\vec{p}$ is zero.

Which one of the following options is CORRECT?

A

Both P and Q are FALSE

B

P is TRUE and Q is FALSE

C

P is FALSE and Q is TRUE

D

Both P and Q are TRUE

3
GATE CE 2015 Set 1
Numerical
+2
-0
The directional derivative of the field $$u(x, y, z)=$$ $${x^2} - 3yz$$ in the direction of the vector $$\left( {\widehat i + \widehat j - 2\widehat k} \right)\,\,$$ at point $$(2, -1, 4)$$ is _______.
Your input ____
4
GATE CE 2014 Set 1
Numerical
+2
-0
A particle moves along a curve whose parametric equations are: $$\,x = {t^3} + 2t,\,y = - 3{e^{ - 2t}}\,\,$$ and $$z=2$$ $$sin$$ $$(5t),$$ where $$x, y$$ and $$z$$ show variations of the distance covered by the particle (in cm) with time $$t $$ (in $$s$$). The magnitude of the acceleration of the particle (in cm/s2) at $$t=0$$ is _______.
Your input ____
GATE CE Subjects
EXAM MAP