Linear Algebra ยท Engineering Mathematics ยท GATE CE
Start PracticeMarks 1
GATE CE 2024 Set 2
The statements P and Q are related to matrices A and B, which are conformable for both addition and multiplication. P: $(A + B)^T = A^T + B^T$ Q: $(AB...
GATE CE 2023 Set 2
For the matrix
$\rm [A]=\begin{bmatrix}1&-1&0\\\ -1&2&-1\\\ 0&-1&1\end{bmatrix}$
which of the following statements is/are TR...
GATE CE 2023 Set 1
If M is an arbitrary real n ร n matrix, then which of the following matrices will have non-negative eigenvalues?
GATE CE 2022 Set 2
Let y be a non-zero vector of size 2022 $$\times$$ 1. Which of the following statements is/are TRUE?
GATE CE 2022 Set 2
The components of pure shear strain in a sheared are given in the matrix form:
$$\varepsilon = \left[ {\matrix{
1 & 1 \cr
1 & { - 1} \cr
...
GATE CE 2022 Set 2
P and Q are two square matrices of the same order. Which of the following statements is/are correct?
GATE CE 2022 Set 1
The matrix M is defined as
$$M = \left[ {\matrix{
1 & 3 \cr
4 & 2 \cr
} } \right]$$
and has eigenvalues 5 and $$-$$2. The matrix Q is form...
GATE CE 2022 Set 1
The Cartesian coordinates of a point P in a right-handed coordinate system are (1, 1, 1). The transformed coordinates of P due to a 45$$^\circ$$ clock...
GATE CE 2017 Set 2
Consider the following simultaneous equations (with $${c_1}$$ and $${c_2}$$ being constants):
$$$3{x_1} + 2{x_2} = {c_1}$$$
$$$4{x_1} + {x_2} = {c_2}...
GATE CE 2017 Set 1
The matrix $$P$$ is the inverse of a matrix $$Q.$$ If $${\rm I}$$ denotes the identity matrix, which one of the following options is correct?
GATE CE 2016 Set 1
If the entries in each column of a square matrix $$M$$ add up to $$1$$, then an eigenvalue of $$M$$ is
GATE CE 2015 Set 1
For what value of $$'p'$$ the following set of equations will have no solutions?
$$$2x+3y=5$$$
$$$3x+py=10$$$
GATE CE 2015 Set 2
Let $$A = \left[ {{a_{ij}}} \right],\,\,1 \le i,j \le n$$ with $$n \ge 3$$ and $${{a_{ij}} = i.j.}$$
The rank of $$A$$ is :
GATE CE 2014 Set 1
The sum of Eigen values of the matrix, $$\left[ M \right]$$
is where $$\left[ M \right] = \left[ {\matrix{
{215} & {650} & {795} \cr
...
GATE CE 2014 Set 1
Given the matrices $$J = \left[ {\matrix{
3 & 2 & 1 \cr
2 & 4 & 2 \cr
1 & 2 & 6 \cr
} } \right]$$ and $$K = ...
GATE CE 2014 Set 2
The determinant of matrix $$\left[ {\matrix{
0 & 1 & 2 & 3 \cr
1 & 0 & 3 & 0 \cr
2 & 3 & 0 & 1 \cr
...
GATE CE 2014 Set 2
The rank of the matrix $$\left[ {\matrix{
6 & 0 & 4 & 4 \cr
{ - 2} & {14} & 8 & {18} \cr
{14} & { - 14} &...
GATE CE 2012
The eigen values of matrix $$\left[ {\matrix{
9 & 5 \cr
5 & 8 \cr
} } \right]$$ are
GATE CE 2009
A square matrix $$B$$ is symmetric if ____
GATE CE 2009
In the solution of the following set of linear equations by Gauss-elimination using partial pivoting
$$$5x+y+2z=34,$$$
$$$4y-3z=12$$$
and
$$$10x-2y+z...
GATE CE 2008
The following system of equations
$$$x+y+z=3,$$$
$$$x+2y+3z=4,$$$
$$$x+4y+kz=6$$$
will not have a unique solution for $$k$$ equal to
GATE CE 2008
The product of matrices $${\left( {PQ} \right)^{ - 1}}P$$ is
GATE CE 2008
The eigenvalues of the matrix $$\left[ P \right] = \left[ {\matrix{
4 & 5 \cr
2 & { - 5} \cr
} } \right]$$ are
GATE CE 2006
Solution for the system defined by the set of equations $$4y+3z=8, 2x-z=2$$ & $$3x+2y=5$$ is
GATE CE 2005
Consider the following system of equations in three real variable $${x_1},$$ $${x_2}$$ and $${x_3}:$$
$$$2{x_1} - {x_2} + 3{x_3} = 1$$$
$$$3{x_1} + 2{...
GATE CE 2005
Consider a non-homogeneous system of linear equations represents mathematically an over determined system. Such a system will be
GATE CE 2005
Consider the matrices $$\,{X_{4x3,}}\,\,{Y_{4x3}}$$ $$\,\,{P_{2x3}}.$$ The order of $$\,{\left[ {P{{\left( {{X^T}Y} \right)}^{ - 1}}{P^T}} \right]^T}...
GATE CE 2005
Consider the system of equations, $${A_{nxn}}\,\,{X_{nx1}}\,\, = \lambda \,{X_{nx1}}$$ where $$\lambda $$ is a scalar. Let $$\left( {{\lambda _i},\,\,...
GATE CE 2004
Real matrices $$\,\,{\left[ A \right]_{3x1,}}$$ $$\,\,{\left[ B \right]_{3x3,}}$$ $$\,\,{\left[ C \right]_{3x5,}}$$ $$\,\,{\left[ D \right]_{5x3,}}$$...
GATE CE 2004
The eigen values of the matrix $$\left[ {\matrix{
4 & { - 2} \cr
{ - 2} & 1 \cr
} } \right]$$ are
GATE CE 2003
Given matrix $$\left[ A \right] = \left[ {\matrix{
4 & 2 & 1 & 3 \cr
6 & 3 & 4 & 7 \cr
2 & 1 & 0 & 1 ...
GATE CE 2002
Eigen values of the following matrix are $$\left[ {\matrix{
{ - 1} & 4 \cr
4 & { - 1} \cr
} } \right]$$
GATE CE 2001
The determinant of the following matrix $$\left[ {\matrix{
5 & 3 & 2 \cr
1 & 2 & 6 \cr
3 & 5 & {10} \cr
} } \...
GATE CE 2001
The product $$\left[ P \right]\,\,{\left[ Q \right]^T}$$ of the following two matrices $$\left[ P \right]\,$$ and $$\left[ Q \right]\,$$
where $$\left...
GATE CE 2001
The eigen values of the matrix $$\left[ {\matrix{
5 & 3 \cr
2 & 9 \cr
} } \right]$$ are
GATE CE 2000
Consider the following two statements.
$$(I)$$ The maximum number of linearly independent column vectors of a matrix $$A$$ is called the rank of $$A....
GATE CE 2000
If $$A,B,C$$ are square matrices of the same order then $${\left( {ABC} \right)^{ - 1}}$$ is equal be
GATE CE 1999
If $$A$$ is any $$nxn$$ matrix and $$k$$ is a scalar then $$\left| {kA} \right| = \alpha \left| A \right|$$ where $$\alpha $$ is
GATE CE 1999
The equation $$\left[ {\matrix{
2 & 1 & 1 \cr
1 & 1 & { - 1} \cr
y & {{x^2}} & x \cr
} } \right] = 0$$ repres...
GATE CE 1999
The number of terms in the expansion of general determinant of order $$n$$ is
GATE CE 1998
In matrix algebra $$AS=AT$$ ($$A,S,T,$$ are matrices of appropriate order) implies $$S=T$$ only if
GATE CE 1998
The real symmetric matrix $$C$$ corresponding to the quadratic form $$Q = 4{x_1}{x_2} - 5{x_2}{x_2}$$ is
GATE CE 1998
Obtain the eigen values and eigen vectors of $$A = \left[ {\matrix{
8 & -4 \cr
2 & { 2 } \cr
} } \right].$$
GATE CE 1998
If $$A$$ is a real square matrix then $$A{A^T}$$ is
GATE CE 1997
Inverse of matrix $$\left[ {\matrix{
0 & 1 & 0 \cr
0 & 0 & 1 \cr
1 & 0 & 0 \cr
} } \right]$$ is
GATE CE 1997
If $$A$$ and $$B$$ are two matrices and $$AB$$ exists then $$BA$$ exists,
GATE CE 1997
If the determinant of the matrix $$\left[ {\matrix{
1 & 3 & 2 \cr
0 & 5 & { - 6} \cr
2 & 7 & 8 \cr
} } \right...
Marks 2
GATE CE 2024 Set 2
Consider two matrices $A = \begin{bmatrix}2 & 1 & 4 \\ 1 & 0 & 3\end{bmatrix}$ and $B = \begin{bmatrix}-1 & 0 \\ 2 & 3 \\ 1 & 4 \end{bmatrix}$. The de...
GATE CE 2024 Set 1
What are the eigenvalues of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ ?
GATE CE 2023 Set 2
Two vectors [2 1 0 3]๐ and [1 0 1 2]๐ belong to the null space of a 4 ร 4 matrix of rank 2. Which one of the following vectors also belongs to the n...
GATE CE 2023 Set 2
Cholesky decomposition is carried out on the following square matrix [๐ด].
$\rm [A]=\begin{bmatrix}8&-5\\\ -5&a_{22}\end{bmatrix}$
Let...
GATE CE 2023 Set 1
For the matrix
$[A]= \begin{bmatrix}1&2&3\\\ 3&2&1\\\ 3&1&2 \end{bmatrix} $
which of the following statements is/are TRUE?
...
GATE CE 2017 Set 2
If $$A = \left[ {\matrix{
1 & 5 \cr
6 & 2 \cr
} } \right]\,\,and\,\,B = \left[ {\matrix{
3 & 7 \cr
8 & 4 \cr
}...
GATE CE 2017 Set 1
Consider the matrix $$\left[ {\matrix{
5 & { - 1} \cr
4 & 1 \cr
} } \right].$$ Which one of the following statements is TRUE for t...
GATE CE 2016 Set 2
Consider the following linear system
$$$x+2y-3z=a$$$
$$$2x+3y+3z=b$$$
$$$5x+9y-6z=c$$$
This system is consistent if $$a,b$$ and $$c$$ satisfy the equ...
GATE CE 2015 Set 1
The smallest and largest Eigen values of the
following matrix are : $$\left[ {\matrix{
3 & { - 2} & 2 \cr
4 & { - 4} & 6 \cr...
GATE CE 2015 Set 2
The two Eigen Values of the matrix $$\left[ {\matrix{
2 & 1 \cr
1 & p \cr
} } \right]$$ have a ratio of $$3:1$$ for $$p=2.$$ What ...
GATE CE 2013
What is the minimum number of multiplications involved in computing the matrix product $$PQR?$$ Matrix $$P$$ has $$4$$ rows and $$2$$ columns, matrix ...
GATE CE 2010
The inverse of the matrix $$\left[ {\matrix{
{3 + 2i} & i \cr
{ - i} & {3 - 2i} \cr
} } \right]$$ is
GATE CE 2007
The inverse of $$2 \times 2$$ matrix $$\left[ {\matrix{
1 & 2 \cr
5 & 7 \cr
} } \right]$$ is
GATE CE 2007
The minimum and maximum eigen values of matrix $$\left[ {\matrix{
1 & 1 & 3 \cr
1 & 5 & 1 \cr
3 & 1 & 1 \cr
}...
GATE CE 2007
For what values of $$\alpha $$ and $$\beta $$ the following simultaneous equations have an infinite number of solutions
$$$x+y+z=5,$$$
$$$x+3y+3z=9,$...
GATE CE 2006
For a given matrix $$A = \left[ {\matrix{
2 & { - 2} & 3 \cr
{ - 2} & { - 1} & 6 \cr
1 & 2 & 0 \cr
} } \right...