1
GATE CE 1998
+1
-0.3
In matrix algebra $$AS=AT$$ ($$A,S,T,$$ are matrices of appropriate order) implies $$S=T$$ only if
A
$$A$$ is symmetric
B
$$A$$ is singular
C
$$A$$ is non singular
D
$$A$$ is skew - symmetric
2
GATE CE 1998
+1
-0.3
If $$A$$ is a real square matrix then $$A{A^T}$$ is
A
un symmetric
B
always symmetric
C
skew - symmetric
D
some times symmetric
3
GATE CE 1998
+1
-0.3
The real symmetric matrix $$C$$ corresponding to the quadratic form $$Q = 4{x_1}{x_2} - 5{x_2}{x_2}$$ is
A
$$\left[ {\matrix{ 1 & 2 \cr 2 & { - 5} \cr } } \right]$$
B
$$\left[ {\matrix{ 2 & 0 \cr 0 & { - 5} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 1 \cr 1 & { - 2} \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & 2 \cr 2 & { - 5} \cr } } \right]$$
4
GATE CE 1998
Subjective
+1
-0
Obtain the eigen values and eigen vectors of $$A = \left[ {\matrix{ 8 & -4 \cr 2 & { 2 } \cr } } \right].$$
GATE CE Subjects
Construction Material and Management
Geomatics Engineering Or Surveying
Engineering Mechanics
Transportation Engineering
Strength of Materials Or Solid Mechanics
Reinforced Cement Concrete
Steel Structures
Irrigation
Environmental Engineering
Engineering Mathematics
Structural Analysis
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
General Aptitude
EXAM MAP
Joint Entrance Examination