Vector Calculus Β· Engineering Mathematics Β· GATE CE
Marks 1
Consider a velocity vector, $\vec{V}$ in ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) coordinates given below. Pick one or more CORRECT statement(s) from the choices given below:
$$ \vec{V}=u \vec{x}+v \vec{y} $$
Marks 2
Three vectors $\overrightarrow{p}$, $\overrightarrow{q}$, and $\overrightarrow{r}$ are given as
$ \overrightarrow{p} = \hat{i} + \hat{j} + \hat{k}$
$ \overrightarrow{q} = \hat{i} + 2\hat{j} + 3\hat{k}$
$ \overrightarrow{r} = 2\hat{i} + 3\hat{j} + 4\hat{k}$
Which of the following is/are CORRECT?
A vector field $\vec{p}$ and a scalar field $r$ are given by:
$\vec{p} = (2x^2 - 3xy + z^2) \hat{i} + (2y^2 - 3yz + x^2) \hat{j} + (2z^2 - 3xz + x^2) \hat{k}$
$r = 6x^2 + 4y^2 - z^2 - 9xyz - 2xy + 3xz - yz$
Consider the statements P and Q:
P: Curl of the gradient of the scalar field $r$ is a null vector.
Q: Divergence of curl of the vector field $\vec{p}$ is zero.
Which one of the following options is CORRECT?