Vector Calculus Β· Engineering Mathematics Β· GATE CE

Start Practice

Marks 1

GATE CE 2023 Set 2
Let πœ™ be a scalar field, and 𝒖 be a vector field. Which of the following identities is true for div(πœ™π’–)?
GATE CE 2017 Set 2
The divergence of the vector field $$\,V = {x^2}i + 2{y^3}j + {z^4}k\,\,$$ at $$x=1, y=2, z=3$$ is ________.
GATE CE 2012
For the parallelogram $$OPQR$$ shown in the sketch. $$\,\overrightarrow {OP} = a\widehat i + b\widehat j$$ and $$\,\overrightarrow {OR} = c\wideha...
GATE CE 2011
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are two arbitrary vectors with magnitudes $$a$$ and $$b$$ respectively, $${\left| {\overrightarro...
GATE CE 2009
For a scalar function $$f(x,y,z)=$$ $${x^2} + 3{y^2} + 2{z^2},\,\,$$ the gradient at the point $$P(1,2,-1)$$ is
GATE CE 2003
The vector field $$\,F = x\widehat i - y\widehat j\,\,$$ (where $$\widehat i$$ and $$\widehat j$$ are unit vectors) is
GATE CE 1999
For the function $$\phi = a{x^2}y - {y^3}$$ to represent the velocity potential of an ideal fluid, $${\nabla ^2}\,\,\phi $$ should be equal to zero....
GATE CE 1996
The directional derivative of the function $$f(x, y, z) = x + y$$ at the point $$P(1,1,0)$$ along the direction $$\overrightarrow i + \overrightarro...
GATE CE 1995
The derivative of $$f(x, y)$$ at point $$(1, 2)$$ in the direction of vector $$\overrightarrow i + \overrightarrow j $$ is $$2\sqrt 2 $$ and in the ...

Marks 2

GATE CE 2024 Set 2
Three vectors $\overrightarrow{p}$, $\overrightarrow{q}$, and $\overrightarrow{r}$ are given as$ \overrightarrow{p} = \hat{i} + \hat{j} + \hat{k}$$ \o...
GATE CE 2024 Set 1
A vector field $\vec{p}$ and a scalar field $r$ are given by:$\vec{p} = (2x^2 - 3xy + z^2) \hat{i} + (2y^2 - 3yz + x^2) \hat{j} + (2z^2 - 3xz + x^2) \...
GATE CE 2015 Set 1
The directional derivative of the field $$u(x, y, z)=$$ $${x^2} - 3yz$$ in the direction of the vector $$\left( {\widehat i + \widehat j - 2\widehat ...
GATE CE 2014 Set 1
A particle moves along a curve whose parametric equations are: $$\,x = {t^3} + 2t,\,y = - 3{e^{ - 2t}}\,\,$$ and $$z=2$$ $$sin$$ $$(5t),$$ where $$x...
GATE CE 2009
For a scalar function $$\,f\left( {x,y,z} \right) = {x^2} + 3{y^2} + 2{z^2},\,\,$$ the directional derivative at the point $$P(1,2,-1)$$ in the direct...
GATE CE 2007
The velocity vector is given as $${\mkern 1mu} \vec V = 5xy\widehat i + 2{y^2}\widehat j + 3y{z^2}\widehat k.{\mkern 1mu} {\mkern 1mu} $$ The divergen...
GATE CE 2006
The directional derivative of $$\,\,f\left( {x,y,z} \right) = 2{x^2} + 3{y^2} + {z^2}\,\,$$ at the point $$P(2,1,3)$$ in the direction of the vector...
GATE CE 2005
Value of the integral $$\,\,\oint {xydy - {y^2}dx,\,\,} $$ where, $$c$$ is the square cut from the first quadrant by the line $$x=1$$ and $$y=1$$ will...
GATE CE 2005
The line integral $$\int {\,\,V.dr\,\,} $$ of the vector function $$V\left( r \right) = 2xyz\widehat i + {x^2}z\widehat j + {x^2}y\widehat k\,\,$$ fro...
GATE CE 2002
The directional derivative of the following function at $$(1, 2)$$ in the direction of $$(4i+3j)$$ is : $$f\left( {x,y} \right) = {x^2} + {y^2}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12