In Young's double slit experiment, the ratio of intensities of light from one slit to the other is $$9: 1$$. If Im is the maximum intensity, what is the resultant intensity when they interfere at phase difference $$\phi$$ ?
In Young's double slit experiment, the intensity of light at a point on the screen where the path difference is $$\lambda$$ is $$\mathrm{K}$$ units ($$\lambda$$ is the wavelength of light used). The percentage change in intensity at a point where the path difference is $$\frac{\lambda}{6}$$ and the above point is
In the Young's double slit experiment $$n^{\text {th }}$$ bright for red coincides with $$(n+1)^{\text {th }}$$ bright for violet. Then the value of '$$n$$' is: (given: wave length of red light $$=6300^{\circ} \mathrm{A}$$ and wave length of violet $$=4200^{\circ} \mathrm{A}$$).
When light wave passes from a medium of refractive index '$$\mu$$' to another medium of refractive index '$$2 \mu$$' the phase change occurs to the light is :