1
GATE CE 2010
MCQ (Single Correct Answer)
+2
-0.6
The solution to the ordinary differential equation $${{{d^2}y} \over {d{x^2}}} + {{dy} \over {dx}} - 6y = 0\,\,\,$$ is
2
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The solution for the differential equation $$\,{{d\,y} \over {d\,x}} = {x^2}\,y$$ with the condition that $$y=1$$ at $$x=0$$ is
3
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Transformation to linear form by substituting $$v = {y^{1 - n}}$$ of the equation $${{dy} \over {dt}} + p\left( t \right)y = q\left( t \right){y^n},\,\,n > 0$$ will be
4
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
The solution $${{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} + 17y = 0;$$ $$y\left( 0 \right) = 1,{\left( {{{d\,y} \over {d\,x}}} \right)_{x = {\raise0.5ex\hbox{$\scriptstyle \pi $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}}} = 0\,\,$$ in the range $$0 < x < {\pi \over 4}$$ is given by
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CE Subjects
Engineering Mechanics
Strength of Materials Or Solid Mechanics
Structural Analysis
Construction Material and Management
Reinforced Cement Concrete
Steel Structures
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
Engineering Mathematics
General Aptitude