1
GATE CE 2004
MCQ (Single Correct Answer)
+2
-0.6
Biotransformation of an organic compound having concentration $$(x)$$ can be modeled using an ordinary differential equation $$\,{{d\,x} \over {dt}} + k\,{x^2} = 0,$$ where $$k$$ is the reaction rate constant. If $$x=a$$ at $$t=0$$ then solution of the equation is
A
$$x = a\,{e^{ - kt}}$$
B
$$\,{1 \over x} = {\raise0.5ex\hbox{\scriptstyle 1} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle a}} + k\,t$$
C
$$x = a\left( {1 - {e^{ - kt}}} \right)$$
D
$$x = a\, + k\,t$$
2
GATE CE 2001
MCQ (Single Correct Answer)
+2
-0.6
The solution for the following differential equation with boundary conditions $$y(0)=2$$ and $$\,\,{y^1}\left( 1 \right) = - 3$$ is where $${{{d^2}y} \over {d{x^2}}} = 3x - 2$$
A
$$y = {{{x^3}} \over 3} - {{{x^2}} \over 2} = 3x - 2$$
B
$$y = 3{x^3} - {{{x^2}} \over 2} - 5x + 2$$
C
$$y = {{{x^3}} \over 2} - {x^2} - 5{x \over 2} + 2$$
D
$$y = {x^3} - {{{x^2}} \over 2} + 5x + {3 \over 2}$$
3
GATE CE 1998
Subjective
+2
-0
Solve $${{{d^4}y} \over {d{x^4}}} - y = 15\,\cos \,\,2x$$
4
GATE CE 1997
MCQ (Single Correct Answer)
+2
-0.6
The differential equation $${{dy} \over {dx}} + py = Q,$$ is a linear equation of first order only if,
A
$$P$$ is a constant but $$Q$$ is a function of $$y$$
B
$$P$$ and $$Q$$ are functions of $$y$$ (or) constants
C
$$P$$ is a function of $$y$$ but $$Q$$ is a constant
D
$$P$$ and $$Q$$ are functions of $$x$$ (or) constants
GATE CE Subjects
Engineering Mechanics
Construction Material and Management
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
General Aptitude
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12