1
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The solution for the differential equation $$\,{{d\,y} \over {d\,x}} = {x^2}\,y$$ with the condition that $$y=1$$ at $$x=0$$ is
A
$$y = {e^{{1 \over {2x}}}}$$
B
$$\ln \left( y \right) = {{{x^3}} \over 3} + 4$$
C
$$\ln \left( y \right) = {{{x^2}} \over 2}$$
D
$$y = {e^{{{{x^3}} \over 3}}}$$
2
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Transformation to linear form by substituting $$v = {y^{1 - n}}$$ of the equation $${{dy} \over {dt}} + p\left( t \right)y = q\left( t \right){y^n},\,\,n > 0$$ will be
A
$${{dv} \over {dt}} + \left( {1 - n} \right)pv = \left( {1 - n} \right)q$$
B
$${{dv} \over {dt}} + \left( {1 + n} \right)pv = \left( {1 + n} \right)q$$
C
$${{dv} \over {dt}} + \left( {1 + n} \right)pv = \left( {1 - n} \right)q$$
D
$${{dv} \over {dt}} + \left( {1 - n} \right)pv = \left( {1 + n} \right)q$$
3
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
The solution $${{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} + 17y = 0;$$ $$y\left( 0 \right) = 1,{\left( {{{d\,y} \over {d\,x}}} \right)_{x = {\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}}} = 0\,\,$$ in the range $$0 < x < {\pi \over 4}$$ is given by
A
$${e^{ - x}}\left[ {\cos \,4x + {1 \over 4}\sin \,4x} \right]$$
B
$${e^x}\left[ {\cos \,4x - {1 \over 4}\sin \,4x} \right]$$
C
$${e^{ - 4x}}\left[ {\cos \,4x - {1 \over 4}\sin \,x} \right]$$
D
$${e^{ - 4x}}\left[ {\cos \,4x - {1 \over 4}\sin \,4x} \right]$$
4
GATE CE 2004
MCQ (Single Correct Answer)
+2
-0.6
Biotransformation of an organic compound having concentration $$(x)$$ can be modeled using an ordinary differential equation $$\,{{d\,x} \over {dt}} + k\,{x^2} = 0,$$ where $$k$$ is the reaction rate constant. If $$x=a$$ at $$t=0$$ then solution of the equation is
A
$$x = a\,{e^{ - kt}}$$
B
$$\,{1 \over x} = {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle a$}} + k\,t$$
C
$$x = a\left( {1 - {e^{ - kt}}} \right)$$
D
$$x = a\, + k\,t$$
GATE CE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12