1
GATE CE 1998
Subjective
+1
-0
Obtain the eigen values and eigen vectors of $$A = \left[ {\matrix{ 8 & -4 \cr 2 & { 2 } \cr } } \right].$$
2
GATE CE 1997
+1
-0.3
If $$A$$ and $$B$$ are two matrices and $$AB$$ exists then $$BA$$ exists,
A
only if $$A$$ has as many rows as $$B$$ has columns
B
only if both $$A$$ and $$B$$ are square matrices
C
only if $$A$$ and $$B$$ are skew matrices
D
only if both $$A$$ and $$B$$ are symmetric
3
GATE CE 1997
+1
-0.3
Inverse of matrix $$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & 0 & 1 \cr 0 & 1 & 0 \cr 1 & 0 & 0 \cr } } \right]$$
4
GATE CE 1997
+1
-0.3
If the determinant of the matrix $$\left[ {\matrix{ 1 & 3 & 2 \cr 0 & 5 & { - 6} \cr 2 & 7 & 8 \cr } } \right]$$ is $$26,$$ then the determinant of
the matrix $$\left[ {\matrix{ 2 & 7 & 8 \cr 0 & 5 & { - 6} \cr 1 & 3 & 2 \cr } } \right]$$ is
A
$$-26$$
B
$$26$$
C
$$0$$
D
$$52$$
EXAM MAP
Medical
NEETAIIMS