1
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
If $$R = \left[ {\matrix{ 1 & 0 & { - 1} \cr 2 & 1 & { - 1} \cr 2 & 3 & 2 \cr } } \right]$$ then the top row of $${R^{ - 1}}$$ is
A
$$\left[ {\matrix{ 5 & 6 & 4 \cr } } \right]$$
B
$$\left[ {\matrix{ 5 & -3 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 0 & -1 \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & -1 & 0 \cr } } \right]$$
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
For the matrix $$P = \left[ {\matrix{ 3 & { - 2} & 2 \cr 0 & { - 2} & 1 \cr 0 & 0 & 1 \cr } } \right],$$ one of the eigen values is $$-2.$$ Which of the following is an eigen vector?
A
$$\left( {\matrix{ 3 \cr { - 2} \cr 1 \cr } } \right)$$
B
$$\left[ {\matrix{ { - 3} \cr 2 \cr { - 1} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 \cr { - 2} \cr 3 \cr } } \right]$$
D
$$\left[ {\matrix{ 2 \cr 5 \cr 0 \cr } } \right]$$
3
GATE EE 2005
MCQ (Single Correct Answer)
+1
-0.3
In the matrix equation $$PX=Q$$ which of the following is a necessary condition for the existence of atleast one solution for the unknown vector $$X.$$
A
Augmented matrix $$\left[ {P|Q} \right]$$ must have the same rank as matrix $$P.$$
B
vector $$Q$$ must have only non-zero elements.
C
matrix $$P$$ must be singular
D
matrix $$P$$ must be square
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
for the scalar field $$u = {{{x^2}} \over 2} + {{{y^2}} \over 3},\,\,$$ the magnitude of the gradient at the point $$(1,3)$$ is
A
$$\sqrt {{{13} \over 9}} $$
B
$$\sqrt {{9 \over 2}} $$
C
$$\sqrt 5 $$
D
$${{9 \over 2}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12