1
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has

The state transition equation

A
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - t}}} \cr {{e^{ - t}}} \cr } } \right)$$
B
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - t}}} \cr {3{e^{ - 3t}}} \cr } } \right)$$
C
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - 3t}}} \cr {3{e^{ - 3t}}} \cr } } \right)$$
D
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - 3t}}} \cr {{e^{ - t}}} \cr } } \right)$$
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has

The state transition matrix

A
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {1 - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
B
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {{e^{ - t}} - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - t}}} \cr } } \right)$$
C
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {{e^{ - t}} - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
D
$$\left( {\matrix{ 1 & {\left( {1 - {e^{ - t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
If the compensated system shown in the figure has a phase margin of $${60^ \circ }$$ at the crossover frequency of $$1 rad/sec,$$ the value of the gain $$K$$ is GATE EE 2005 Control Systems - Polar Nyquist and Bode Plot Question 28 English
A
$$0.366$$
B
$$0.732$$
C
$$1.366$$
D
$$2.738$$
4
GATE EE 2005
MCQ (Single Correct Answer)
+1
-0.3
A system with zero initial conditions has the closed loop transfer function $$T\left( s \right) = {{{s^2} + 4} \over {\left( {s + 1} \right)\left( {s + 4} \right)}}.$$ The system output is zero at the frequency
A
$$0.5$$ rad/sec
B
$$1$$ rad/sec
C
$$2$$ rad/sec
D
$$4$$ rad/sec
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12