1
GATE EE 2005
MCQ (Single Correct Answer)
+1
-0.3
For the function $$f\left( x \right) = {x^2}{e^{ - x}},$$ the maximum occurs when $$x$$ is equal to
A
$$2$$
B
$$1$$
C
$$0$$
D
$$-1$$
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
If $$R = \left[ {\matrix{ 1 & 0 & { - 1} \cr 2 & 1 & { - 1} \cr 2 & 3 & 2 \cr } } \right]$$ then the top row of $${R^{ - 1}}$$ is
A
$$\left[ {\matrix{ 5 & 6 & 4 \cr } } \right]$$
B
$$\left[ {\matrix{ 5 & -3 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 0 & -1 \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & -1 & 0 \cr } } \right]$$
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
For the matrix $$P = \left[ {\matrix{ 3 & { - 2} & 2 \cr 0 & { - 2} & 1 \cr 0 & 0 & 1 \cr } } \right],$$ one of the eigen values is $$-2.$$ Which of the following is an eigen vector?
A
$$\left( {\matrix{ 3 \cr { - 2} \cr 1 \cr } } \right)$$
B
$$\left[ {\matrix{ { - 3} \cr 2 \cr { - 1} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 \cr { - 2} \cr 3 \cr } } \right]$$
D
$$\left[ {\matrix{ 2 \cr 5 \cr 0 \cr } } \right]$$
4
GATE EE 2005
MCQ (Single Correct Answer)
+1
-0.3
In the matrix equation $$PX=Q$$ which of the following is a necessary condition for the existence of atleast one solution for the unknown vector $$X.$$
A
Augmented matrix $$\left[ {P|Q} \right]$$ must have the same rank as matrix $$P.$$
B
vector $$Q$$ must have only non-zero elements.
C
matrix $$P$$ must be singular
D
matrix $$P$$ must be square
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12