1
GATE EE 2005
MCQ (Single Correct Answer)
+1
-0.3
Assume that $${D_1}$$ and $${D_2}$$ in figure are ideal diodes the value of current $${I_s}$$ is GATE EE 2005 Analog Electronics - Diode Circuits and Applications Question 27 English
A
$$0$$ mA
B
$$0.5$$ mA
C
$$1$$ mA
D
$$2$$ mA
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
In the $$GH(s)$$ plane, the Nyquist plot of the loop transfer function $$G\left( s \right)\,H\left( s \right) = {{\pi {e^{ - 0.25s}}} \over s}$$ passes through the negative real axis at the point
A
$$\left( { - 0.25,j0} \right)$$
B
$$\left( { - 0.5,j0} \right)$$
C
$$\left( { - 1,j0} \right)$$
D
$$\left( { - 2,j0} \right)$$
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has

The state transition equation

A
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - t}}} \cr {{e^{ - t}}} \cr } } \right)$$
B
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - t}}} \cr {3{e^{ - 3t}}} \cr } } \right)$$
C
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - 3t}}} \cr {3{e^{ - 3t}}} \cr } } \right)$$
D
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - 3t}}} \cr {{e^{ - t}}} \cr } } \right)$$
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has

The state transition matrix

A
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {1 - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
B
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {{e^{ - t}} - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - t}}} \cr } } \right)$$
C
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {{e^{ - t}} - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
D
$$\left( {\matrix{ 1 & {\left( {1 - {e^{ - t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12