1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equation of a circle which touches the straight lines $x+y=2, x-y=2$ and also touches the circle $x^2+y^2=1$ is
A
$(x+\sqrt{2})^2+y^2=3-\sqrt{2}$
B
$(x+\sqrt{2})^2+y^2=1-2 \sqrt{2}$
C
$(x-\sqrt{2})^2+y^2=2(1-\sqrt{2})$
D
$(x-\sqrt{2})^2+y^2=3-2 \sqrt{2}$
2
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The radical axis of the circle $x^2+y^2+2 g x+2 f y+c=0$ and $2 x^2+2 y^2+3 x+8 y+2 c=0$ touches the circle $x^2+y^2+2 x+2 y+1=0$. Then,
A
$g=\frac{3}{8}$ or $f=1$
B
$g=\frac{2}{3}$ or $t=3$
C
$g=\frac{1}{2}$ or $f=1$
D
$g=\frac{3}{4}$ or $f=2$
3
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$2 x-3 y+1=0$ and $4 x-5 y-1=0$ are the equations of two diameters of the circle $S \equiv x^2+y^2+2 g x+2 f y-11=0 . Q$ and $R$ are the points of contact of the tangents drawn from the point $P(-2,-2)$ to this circle. If $C$ is the centre of the circle $S=0$, then the area (in square units ) of the quadrilateral $P Q C R$ is
A
25
B
30
C
24
D
36
4
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the inverse point of the point $(-1,1)$ with respect to the circle $x^2+y^2-2 x+2 y-1=0$ is $(p, q)$, then $p^2+q^2=$
A
$\frac{1}{16}$
B
$\frac{1}{8}$
C
$\frac{1}{4}$
D
$\frac{1}{2}$
AP EAPCET Subjects
EXAM MAP