Sequences and Series · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
The $n$th term of the series $1+(3+5+7)+(9+11+13+15+17)+\ldots$ is
AP EAPCET 2024 - 23th May Morning Shift
2
The number of ways of selecting- 3 numbers that are in GP from the set $\{1,2,3$, $100\}$ is
AP EAPCET 2024 - 23th May Morning Shift
3

$$ 2+3+5+6+8+9+\ldots .2 n \text { terms }= $$

AP EAPCET 2024 - 22th May Morning Shift
4
If $\alpha, \beta$ are the roots of the equation $x^2-6 x-2=0$, $\alpha>\beta$ and $a_n=\alpha^n-\beta^n, n \geq 1$, then the value of $\frac{a_{10}-2 a_8}{2 a_9}$ is equal to
AP EAPCET 2024 - 22th May Morning Shift
5
$|x|<1$, The coefficient of $x^2$ in the power series expansion of $\frac{x^4}{(x+1)(x-2)}$ is
AP EAPCET 2024 - 22th May Morning Shift
6
If $1 \cdot 3 \cdot 5+3 \cdot 5 \cdot 7+5 \cdot 7 \cdot 9+\ldots n$ terms $=n(n+1) f(n)-3 n$, then $f(l)=$
AP EAPCET 2024 - 21th May Evening Shift
7
The condition that the roots of $x^3-b x^2+c x-d=0$ are in arithmetic progression is
AP EAPCET 2024 - 21th May Evening Shift
8
In the expansion of $\frac{2 x+1}{(1+x)(1-2 x)}$ the sum of the coefficients of the first 5 odd powers of $x$ is
AP EAPCET 2024 - 21th May Evening Shift
9
$\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\frac{1}{9 \cdot 13}+\ldots$. upto $n$ terms $=$
AP EAPCET 2024 - 21th May Morning Shift
10
If the roots of the equation $4 x^3-12 x^2+11 x+m=0$ are in arithmetic progression, then $m=$
AP EAPCET 2024 - 21th May Morning Shift
11
If $2 \cdot 4^{2 n+1}+3^{3 n+1}$ is divisible by $k$ for all $n \in N$, then $k=$
AP EAPCET 2024 - 20th May Evening Shift
12
If the roots of the equation $x^3+a x^2+b x+c=0$ are in arithmetic progression. Then,
AP EAPCET 2024 - 20th May Evening Shift
13
$ \frac{1}{3 \cdot 7}+\frac{1}{7 \cdot 11}+\frac{1}{11 \cdot 15}+\ldots$ to 50 terms $=$
AP EAPCET 2024 - 20th May Morning Shift
14
$$1+\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\ldots \text { to } \infty= $$
AP EAPCET 2024 - 20th May Morning Shift
15
$$ 2 \cdot 5+5 \cdot 9+8 \cdot 13+11 \cdot 17+\ldots \text { to } 10 \text { terms }= $$
AP EAPCET 2024 - 19th May Evening Shift
16
If the roots of equation $x^3-13 x^2+K x-27=0$ are in geometric progression, then $K=$
AP EAPCET 2024 - 19th May Evening Shift
17
$$ 1-\frac{2}{3}+\frac{2 \cdot 4}{3 \cdot 6}-\frac{2 \cdot 4 \cdot 6}{3 \cdot 6 \cdot 9}+\ldots \infty= $$
AP EAPCET 2024 - 19th May Evening Shift
18

Suppose that the three points $$A, B$$ and $$C$$ in the plane are such that their $$x$$-coordinates as well as $$y$$-coordinates are in GP with the same common ratio. Then, the points $$A, B$$ and $$C$$

AP EAPCET 2022 - 5th July Morning Shift
19

If $$1+x^2=\sqrt{3} x$$, then $$\sum_{n=1}^{24}\left(x^n-\frac{1}{x^n}\right)^2$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
20

Let $$p$$ and $$q$$ be the roots of the equation $$x^2-2 x+A=0$$ and let $$r$$ and $$s$$ be the roots of the equation $$x^2-18 x+B=0$$. If $$p < q < r < s$$ are in AP then the values of $$A$$ and $$B$$ are

AP EAPCET 2021 - 19th August Evening Shift
21

Let $$f(x)=x^3+a x^2+b x+c$$ be polynomial with integer coefficients. If the roots of $$f(x)$$ are integer and are in Arithmetic Progression, then $$a$$ cannot take the value

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12