Vector Algebra · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
Let $\hat{\mathbf{a}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \hat{\mathbf{b}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$. The projection d the sum of the vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ on the vector perpendicular to the plance of $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$, is
AP EAPCET 2024 - 22th May Morning Shift
2

In $\triangle P Q R,(4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}),(2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})$ and $(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \mathbf{k})$are$\mathbf{}$ the position vectors of the vectices $P, Q$ and $R$ respectively then, the position vector fo the point ol intersection of the angle bisector of $P$ and $Q R$ is

AP EAPCET 2024 - 22th May Morning Shift
3
If $\hat{\mathbf{f}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{g}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, then the projection vector of $\hat{\mathrm{f}}$ on $\hat{\mathrm{g}}$ is
AP EAPCET 2024 - 22th May Morning Shift
4

    If $\theta$ is the angle between $\hat{\mathbf{f}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\hat{\mathbf{g}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+a \hat{\mathbf{k}}$ and $\sin \theta=\sqrt{\frac{24}{28}}$, then $7 a^2+24 a=$

AP EAPCET 2024 - 22th May Morning Shift
5
If $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}},-3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are the position vectors of three points, $A, B, C$ respectively, then $A, B, C$
AP EAPCET 2024 - 21th May Evening Shift
6
If $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are position vectors of 4 points such that $2 a+3 b+5 c-10 d=0$, then the ratio in which the line joining $c$ and $d$ divides the line segment joining $a$ and $\mathbf{b}$ is
AP EAPCET 2024 - 21th May Evening Shift
7
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are 3 vectors such that $|\mathbf{a}|=5,|\mathbf{b}|=8,|\mathbf{c}|=11$ and $\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}$, then the angle between the vectors $\mathbf{a}$ and $\mathbf{b}$ is
AP EAPCET 2024 - 21th May Evening Shift
8

    $\mathbf{a}=\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad \mathbf{b}=\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\mathbf{c}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ ar linearly dependent vectors and magnitude of $ \alpha $$ \sqrt{14} $${\text {}}{ }^{}$ If $\alpha, \beta$ are integers, then $\alpha+\beta=$

AP EAPCET 2024 - 21th May Morning Shift
9
$\mathbf{c}$ is a vector along the bisector of the internal angle between the vectors $\mathbf{a}=4 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\mathbf{b}=12 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$. If the magnitude of $\mathbf{c}$ is $3 \sqrt{13}$, then c=
AP EAPCET 2024 - 21th May Morning Shift
10
$\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are two vectors and $\mathbf{c}$ is a unit vectors lying in the plane of $\mathbf{a}$ and $\mathbf{b}$. If $\mathbf{c}$ is perpendicular to $\mathbf{b}$, then $\mathbf{c}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=$
AP EAPCET 2024 - 21th May Morning Shift
11
If $\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \mathbf{c}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$. $\mathbf{d}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are four vector, then $(\mathbf{a} \times \mathbf{c}) \times(\mathbf{b} \times \mathbf{d})=$
AP EAPCET 2024 - 21th May Morning Shift
12
The angle between the diagonals of the parallelogram whose adjacent sides are $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is
AP EAPCET 2024 - 20th May Evening Shift
13
If the points having the position vectors $-i+4 j-4 k_{\text {, }}$, $3 i+2 j-5 k,-3 i+8 j-5 k$ and $-3 i+2 j+\lambda k$ are coplanar, then $\lambda=$
AP EAPCET 2024 - 20th May Evening Shift
14
If $|f|=10,|g|=14$ and $|f-g|=15$, then $|f+g|=$
AP EAPCET 2024 - 20th May Evening Shift
15
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors such that $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=\sqrt{3}$ and $(a+b-c)^2+(b+c-a)^2+(c+a-b)^2=36$, then $|2 a-3 b+2 c|=$
AP EAPCET 2024 - 20th May Evening Shift
16
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors. If $\alpha \mathbf{d}=\mathbf{a}+\mathbf{b}+\mathbf{c}$ and $\beta \mathbf{a}=\mathbf{b}+\mathbf{c}+\mathbf{d}$, then $|\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}|=$
AP EAPCET 2024 - 20th May Morning Shift
17
$\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are three unit vectors. Let $\hat{\mathbf{p}}=\hat{\mathbf{u}}+\hat{\mathbf{v}}+\hat{\mathbf{w}} \cdot \hat{\mathbf{q}}=\hat{\mathbf{u}} \times(\hat{\mathbf{v}} \times \hat{\mathbf{w}})$. If $\hat{\mathbf{p}} \cdot \hat{\mathbf{u}}=\frac{3}{2} \cdot \hat{\mathbf{p}} \hat{\mathbf{v}}=\frac{7}{4}|\hat{\mathbf{p}}|=2$ and $v=K . q$, then $K=$
AP EAPCET 2024 - 20th May Morning Shift
18
If $\mathbf{a}$ and $\mathbf{b}$ are the two non collinear vectors, then $|\mathbf{b}|\mathbf{a}+|\mathbf{a}| \mathbf{b}$ represents
AP EAPCET 2024 - 20th May Morning Shift
19
If $L M N$ are the mid-points of the sides $P Q, Q R$ and $R P d$ $\triangle P Q R$ respectively, then $$ \begin{aligned} & \mathbf{Q M}+\mathbf{L N}+\mathbf{M L}+\mathbf{R N}-\mathbf{M N}-\mathbf{Q L}= \end{aligned} $$
AP EAPCET 2024 - 19th May Evening Shift
20
Let $\mathbf{a} \times \mathbf{b}=7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\mathbf{a}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$. If the length of projection of $\mathbf{b}$ on $\mathbf{a}$ is $$ \frac{8}{\sqrt{14}}, \text { then }|b|= $$
AP EAPCET 2024 - 19th May Evening Shift
21
Let $A B C$ be an equilateral triangle of side a. $M$ and $N$ are two points on the sides $A B$ and $A C$, respectively such that $\mathbf{A N}={ }^{\prime} K \mathbf{A C}$ and $\mathbf{A B}=3 \mathbf{A M}$. If the vectors $\mathbf{B N}$ and $\mathbf{C M}$ are perpendicular, then $K=$
AP EAPCET 2024 - 19th May Evening Shift
22
Let $\mathbf{a}$ and $\mathbf{b}$ be two non-collinear vector of unit modulus. If $\mathbf{u}=\mathbf{a}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}$ and $\mathbf{v}=\mathbf{a} \times \mathbf{b}$, then $|\mathbf{v}|=$
AP EAPCET 2024 - 19th May Evening Shift
23
In a regular hexagon $A B C D E F, \mathbf{A B}=\mathbf{a}$ and $\mathbf{B C}=\mathbf{b}$, then $F A=$
AP EAPCET 2024 - 18th May Morning Shift
24
If $\mathbf{f}, \mathbf{g}, \mathbf{h}$ be mutually orthogonal vectors of equal magnitudes, then the angle between the vectors $\mathbf{f}+\mathbf{g}+\mathbf{h}$ and $\mathbf{h}$ is
AP EAPCET 2024 - 18th May Morning Shift
25
Let $\mathbf{a}, \mathbf{b}$ be two unit vectors. If $\mathbf{c}=\mathbf{a}+2 \mathbf{b}$ and $\mathbf{d}=5 \mathbf{a}-4 \mathbf{b}$ are perpendicular to each other, then the angle between $a$ and $b$ is
AP EAPCET 2024 - 18th May Morning Shift
26
If the vectors $\mathbf{a}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$, $\mathbf{c}=3 \hat{\mathbf{i}}+p \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ are coplanar, then $p=$
AP EAPCET 2024 - 18th May Morning Shift
27
If $(\alpha, \beta, \gamma)$ are the direction cosines of an angular bisector of two lines whose direction ratios are $(2,2,1)$ and $(2,-1,-2)$, then $(\alpha+\beta+\gamma)^2=$
AP EAPCET 2024 - 18th May Morning Shift
28

a, b, c are non-coplanar vectors. If $$\mathbf{a}+3 \mathbf{b}+4 \mathbf{c}=x(\mathbf{a}-2 \mathbf{b}+3 \mathbf{c})+y(\mathbf{a}+5 \mathbf{b}-2 \mathbf{c}) +z(6 \mathbf{a}+14 \mathbf{b}+4 \mathbf{c}) \text {, then } x+y+z=$$

AP EAPCET 2022 - 5th July Morning Shift
29

Three vectors of magnitudes $$a, 2 a, 3 a$$ are along the directions of the diagonals of 3 adjacent faces of a cube that meet in a point. Then, the magnitude of the sum of those diagonals is

AP EAPCET 2022 - 5th July Morning Shift
30

If $$\mathbf{a}$$ is collinear with $$\mathbf{b}=3 \hat{i}+6 \hat{j}+6 \hat{k}$$ and $$\mathbf{a} \cdot \mathbf{b}=27$$, then $$|\mathbf{a}|=$$

AP EAPCET 2022 - 5th July Morning Shift
31

Let $$a, b$$ and $$c$$ be unit vectors such that $$a$$ is perpendicular to the plane containing $$\mathbf{b}$$ and $$\mathbf{c}$$ and angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then, $$|\mathbf{a}+\mathbf{b}+\mathbf{c}|=$$

AP EAPCET 2022 - 5th July Morning Shift
32

Let $$\mathbf{F}=2 \hat{i}+2 \hat{j}+5 \hat{k}, A=(1,2,5), B=(-1,-2,-3)$$ and $$\mathbf{B A} \times \mathbf{F}=4 \hat{i}+6 \hat{j}+2 \lambda \hat{k}$$, then $$\lambda=$$

AP EAPCET 2022 - 5th July Morning Shift
33

$$O A B C$$ is a tetrahedron. If $$D, E$$ are the mid-points of $$O A$$ and $$B C$$ respectively, then $$\mathbf{D E}=$$

AP EAPCET 2022 - 4th July Evening Shift
34

If $$\mathbf{a}+\mathbf{b}+\mathbf{c}=0$$ and $$|\mathbf{a}|=7,|\mathbf{b}|=5,|\mathbf{c}|=3$$ then the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is

AP EAPCET 2022 - 4th July Evening Shift
35

If $$P$$ and $$Q$$ are two points on the curve $$y=2^{x+2}$$ in the rectangular cartesian coordinate system such that $$\mathbf{O P} \cdot \hat{i}=-1, \mathrm{OQ} \cdot \hat{i}=2$$, then $$\mathrm{OQ}-4 \mathrm{OP}=$$

AP EAPCET 2022 - 4th July Evening Shift
36

In quadrilateral $$A B C D, \mathbf{A B}=\mathbf{a}, \mathbf{B C}=\mathbf{b}$$. $$\mathbf{D A}=\mathbf{a}-\mathbf{b}, M$$ is the mid-point of $$B C$$ and $$X$$ is a point on DM such that, $$\mathbf{D X}=\frac{4}{5}$$ DM. Then, the points $$A, X$$ and $$C$$.

AP EAPCET 2022 - 4th July Morning Shift
37

The vectors $$3 \mathbf{a}-5 \mathbf{b}$$ and $$2 \mathbf{a}+\mathbf{b}$$ are mutually perpendicular and the vectors $$a+4 b$$ and $$-\mathbf{a}+\mathbf{b}$$ are also mutually perpendicular, then the acute angle between $$\mathbf{a}$$ and $$\mathbf{b}$$ is

AP EAPCET 2022 - 4th July Morning Shift
38

Let $$\mathbf{a}=x \hat{i}+y \hat{j}+z \hat{k}$$ and $$x=2 y$$. If $$|\mathbf{a}|=5 \sqrt{2}$$ and a makes an angle of $$135^{\circ}$$ with the Z-axis, then $$\mathbf{a}=$$

AP EAPCET 2022 - 4th July Morning Shift
39

Let $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ be the position vectors of the vertices of a $$\triangle A B C$$. Through the vertices, lines are drawn parallel to the sides to form the $$\Delta A^{\prime} B^{\prime} C^{\prime}$$. Then, the centroid of $$\Delta A^{\prime} B^{\prime} C^{\prime}$$ is

AP EAPCET 2022 - 4th July Morning Shift
40

The position vectors of the points $$A$$ and $$B$$ with respect to $$O$$ are $$2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. The length of the internal bisector of $$\angle B O A$$ of $$\triangle A O B$$ is (take proportionality constant is 2)

AP EAPCET 2021 - 20th August Morning Shift
41

Let $$\mathbf{u}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{v}=-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}$$ and $$\mathbf{w}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. Then which of the following statement is true?

AP EAPCET 2021 - 20th August Morning Shift
42

If a = (1, 1, 0) and b = (1, 1, 1), then unit vector in the plane of a and b and perpendicular to a is

AP EAPCET 2021 - 20th August Morning Shift
43

Let $$\mathbf{a}=\hat{\mathbf{i}}$$ and $$\mathbf{b}=\hat{\mathbf{j}}$$, the point of intersection of the lines $$\mathbf{r} \times \mathbf{a}=\mathbf{b} \times \mathbf{a}$$ and $$\mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$$ is

AP EAPCET 2021 - 20th August Morning Shift
44

Which of the following vector is equally inclined with the coordinate axes?

AP EAPCET 2021 - 19th August Evening Shift
45

If $$\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$, and $$3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ are position vectors of $$A, B$$ and $$C$$ respectively and if $$D$$ and $$E$$ are mid points of sides $$B C$$ and $$A C$$, then $$\mathbf{D E}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
46

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} < 0$$ and $$|\mathbf{a} \cdot \mathbf{b}|=|\mathbf{a} \times \mathbf{b}|$$ then the angle between the vectors $$\mathbf{a}$$ and $$\mathbf{b}$$ is

AP EAPCET 2021 - 19th August Evening Shift
47

Let $$\mathbf{a}, \mathbf{b}$$ and $$\mathbf{c}$$ be three-unit vectors and $$\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}=0$$. If the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then $$[\mathbf{a b c}]^2$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
48

Let $$x$$ and $$y$$ are real numbers. If $$\mathbf{a}=(\sin x) \hat{\mathbf{i}}+(\sin y) \hat{\mathbf{j}}$$ and $$\mathbf{b}=(\cos x) \hat{\mathbf{i}}+(\cos y) \hat{\mathbf{j}}$$, then $$|\mathbf{a} \times \mathbf{b}|$$ is

AP EAPCET 2021 - 19th August Evening Shift
49

A vector makes equal angles $$\alpha$$ with $$X$$ and $$Y$$-axis, and $$90 \Upsilon$$ with $$Z$$-axis. Then, $$\alpha$$ is equal to (c) 45Yand 135Y (d) $90 \mathrm{Y}$

AP EAPCET 2021 - 19th August Morning Shift
50

Angle made by the position vector of the point (5, $$-$$4, $$-$$3) with the positive direction of X-axis is

AP EAPCET 2021 - 19th August Morning Shift
51

If the volume of the parallelopiped formed by the vectors $$\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$$ and $$a \hat{\mathbf{i}}+\hat{\mathbf{k}}$$ becomes minimum, then $$a$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
52

If $$\mathbf{a}=\frac{3}{2} \hat{\mathbf{k}}$$ and $$\mathbf{b}=\frac{2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}}{2}$$, then angle between $$\mathbf{a}+\mathbf{b}$$ and $$\mathbf{a}-\mathbf{b}$$ is

AP EAPCET 2021 - 19th August Morning Shift
53

Let $$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$$ and $$\mathbf{c}=7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$$, then the area of parallelogram having diagonals $$\mathbf{a}+\mathbf{b}$$ and $$\mathbf{b}+\mathbf{c}$$ is

AP EAPCET 2021 - 19th August Morning Shift
54

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$|\mathbf{a}|=2, |\mathbf{b}|=3$$ and $$\mathbf{a}+t \mathbf{b}$$ and $$\mathbf{a}-t \mathbf{b}$$ are perpendicular, where $$t$$ is a positive scalar, then

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12