Vector Algebra · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1

a, b, c are non-coplanar vectors. If $$\mathbf{a}+3 \mathbf{b}+4 \mathbf{c}=x(\mathbf{a}-2 \mathbf{b}+3 \mathbf{c})+y(\mathbf{a}+5 \mathbf{b}-2 \mathbf{c}) +z(6 \mathbf{a}+14 \mathbf{b}+4 \mathbf{c}) \text {, then } x+y+z=$$

AP EAPCET 2022 - 5th July Morning Shift
2

Three vectors of magnitudes $$a, 2 a, 3 a$$ are along the directions of the diagonals of 3 adjacent faces of a cube that meet in a point. Then, the magnitude of the sum of those diagonals is

AP EAPCET 2022 - 5th July Morning Shift
3

If $$\mathbf{a}$$ is collinear with $$\mathbf{b}=3 \hat{i}+6 \hat{j}+6 \hat{k}$$ and $$\mathbf{a} \cdot \mathbf{b}=27$$, then $$|\mathbf{a}|=$$

AP EAPCET 2022 - 5th July Morning Shift
4

Let $$a, b$$ and $$c$$ be unit vectors such that $$a$$ is perpendicular to the plane containing $$\mathbf{b}$$ and $$\mathbf{c}$$ and angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then, $$|\mathbf{a}+\mathbf{b}+\mathbf{c}|=$$

AP EAPCET 2022 - 5th July Morning Shift
5

Let $$\mathbf{F}=2 \hat{i}+2 \hat{j}+5 \hat{k}, A=(1,2,5), B=(-1,-2,-3)$$ and $$\mathbf{B A} \times \mathbf{F}=4 \hat{i}+6 \hat{j}+2 \lambda \hat{k}$$, then $$\lambda=$$

AP EAPCET 2022 - 5th July Morning Shift
6

$$O A B C$$ is a tetrahedron. If $$D, E$$ are the mid-points of $$O A$$ and $$B C$$ respectively, then $$\mathbf{D E}=$$

AP EAPCET 2022 - 4th July Evening Shift
7

If $$\mathbf{a}+\mathbf{b}+\mathbf{c}=0$$ and $$|\mathbf{a}|=7,|\mathbf{b}|=5,|\mathbf{c}|=3$$ then the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is

AP EAPCET 2022 - 4th July Evening Shift
8

If $$P$$ and $$Q$$ are two points on the curve $$y=2^{x+2}$$ in the rectangular cartesian coordinate system such that $$\mathbf{O P} \cdot \hat{i}=-1, \mathrm{OQ} \cdot \hat{i}=2$$, then $$\mathrm{OQ}-4 \mathrm{OP}=$$

AP EAPCET 2022 - 4th July Evening Shift
9

In quadrilateral $$A B C D, \mathbf{A B}=\mathbf{a}, \mathbf{B C}=\mathbf{b}$$. $$\mathbf{D A}=\mathbf{a}-\mathbf{b}, M$$ is the mid-point of $$B C$$ and $$X$$ is a point on DM such that, $$\mathbf{D X}=\frac{4}{5}$$ DM. Then, the points $$A, X$$ and $$C$$.

AP EAPCET 2022 - 4th July Morning Shift
10

The vectors $$3 \mathbf{a}-5 \mathbf{b}$$ and $$2 \mathbf{a}+\mathbf{b}$$ are mutually perpendicular and the vectors $$a+4 b$$ and $$-\mathbf{a}+\mathbf{b}$$ are also mutually perpendicular, then the acute angle between $$\mathbf{a}$$ and $$\mathbf{b}$$ is

AP EAPCET 2022 - 4th July Morning Shift
11

Let $$\mathbf{a}=x \hat{i}+y \hat{j}+z \hat{k}$$ and $$x=2 y$$. If $$|\mathbf{a}|=5 \sqrt{2}$$ and a makes an angle of $$135^{\circ}$$ with the Z-axis, then $$\mathbf{a}=$$

AP EAPCET 2022 - 4th July Morning Shift
12

Let $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ be the position vectors of the vertices of a $$\triangle A B C$$. Through the vertices, lines are drawn parallel to the sides to form the $$\Delta A^{\prime} B^{\prime} C^{\prime}$$. Then, the centroid of $$\Delta A^{\prime} B^{\prime} C^{\prime}$$ is

AP EAPCET 2022 - 4th July Morning Shift
13

The position vectors of the points $$A$$ and $$B$$ with respect to $$O$$ are $$2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. The length of the internal bisector of $$\angle B O A$$ of $$\triangle A O B$$ is (take proportionality constant is 2)

AP EAPCET 2021 - 20th August Morning Shift
14

Let $$\mathbf{u}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{v}=-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}$$ and $$\mathbf{w}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. Then which of the following statement is true?

AP EAPCET 2021 - 20th August Morning Shift
15

If a = (1, 1, 0) and b = (1, 1, 1), then unit vector in the plane of a and b and perpendicular to a is

AP EAPCET 2021 - 20th August Morning Shift
16

Let $$\mathbf{a}=\hat{\mathbf{i}}$$ and $$\mathbf{b}=\hat{\mathbf{j}}$$, the point of intersection of the lines $$\mathbf{r} \times \mathbf{a}=\mathbf{b} \times \mathbf{a}$$ and $$\mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$$ is

AP EAPCET 2021 - 20th August Morning Shift
17

Which of the following vector is equally inclined with the coordinate axes?

AP EAPCET 2021 - 19th August Evening Shift
18

If $$\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$, and $$3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ are position vectors of $$A, B$$ and $$C$$ respectively and if $$D$$ and $$E$$ are mid points of sides $$B C$$ and $$A C$$, then $$\mathbf{D E}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
19

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} < 0$$ and $$|\mathbf{a} \cdot \mathbf{b}|=|\mathbf{a} \times \mathbf{b}|$$ then the angle between the vectors $$\mathbf{a}$$ and $$\mathbf{b}$$ is

AP EAPCET 2021 - 19th August Evening Shift
20

Let $$\mathbf{a}, \mathbf{b}$$ and $$\mathbf{c}$$ be three-unit vectors and $$\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}=0$$. If the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then $$[\mathbf{a b c}]^2$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
21

Let $$x$$ and $$y$$ are real numbers. If $$\mathbf{a}=(\sin x) \hat{\mathbf{i}}+(\sin y) \hat{\mathbf{j}}$$ and $$\mathbf{b}=(\cos x) \hat{\mathbf{i}}+(\cos y) \hat{\mathbf{j}}$$, then $$|\mathbf{a} \times \mathbf{b}|$$ is

AP EAPCET 2021 - 19th August Evening Shift
22

A vector makes equal angles $$\alpha$$ with $$X$$ and $$Y$$-axis, and $$90 \Upsilon$$ with $$Z$$-axis. Then, $$\alpha$$ is equal to (c) 45Yand 135Y (d) $90 \mathrm{Y}$

AP EAPCET 2021 - 19th August Morning Shift
23

Angle made by the position vector of the point (5, $$-$$4, $$-$$3) with the positive direction of X-axis is

AP EAPCET 2021 - 19th August Morning Shift
24

If the volume of the parallelopiped formed by the vectors $$\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$$ and $$a \hat{\mathbf{i}}+\hat{\mathbf{k}}$$ becomes minimum, then $$a$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
25

If $$\mathbf{a}=\frac{3}{2} \hat{\mathbf{k}}$$ and $$\mathbf{b}=\frac{2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}}{2}$$, then angle between $$\mathbf{a}+\mathbf{b}$$ and $$\mathbf{a}-\mathbf{b}$$ is

AP EAPCET 2021 - 19th August Morning Shift
26

Let $$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$$ and $$\mathbf{c}=7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$$, then the area of parallelogram having diagonals $$\mathbf{a}+\mathbf{b}$$ and $$\mathbf{b}+\mathbf{c}$$ is

AP EAPCET 2021 - 19th August Morning Shift
27

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$|\mathbf{a}|=2, |\mathbf{b}|=3$$ and $$\mathbf{a}+t \mathbf{b}$$ and $$\mathbf{a}-t \mathbf{b}$$ are perpendicular, where $$t$$ is a positive scalar, then

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12