Vector Algebra · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
The angle between the diagonals of the parallelogram whose adjacent sides are $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is
AP EAPCET 2024 - 20th May Evening Shift
2
If the points having the position vectors $-i+4 j-4 k_{\text {, }}$, $3 i+2 j-5 k,-3 i+8 j-5 k$ and $-3 i+2 j+\lambda k$ are coplanar, then $\lambda=$
AP EAPCET 2024 - 20th May Evening Shift
3
If $|f|=10,|g|=14$ and $|f-g|=15$, then $|f+g|=$
AP EAPCET 2024 - 20th May Evening Shift
4
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors such that $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=\sqrt{3}$ and $(a+b-c)^2+(b+c-a)^2+(c+a-b)^2=36$, then $|2 a-3 b+2 c|=$
AP EAPCET 2024 - 20th May Evening Shift
5
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors. If $\alpha \mathbf{d}=\mathbf{a}+\mathbf{b}+\mathbf{c}$ and $\beta \mathbf{a}=\mathbf{b}+\mathbf{c}+\mathbf{d}$, then $|\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}|=$
AP EAPCET 2024 - 20th May Morning Shift
6
$\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are three unit vectors. Let $\hat{\mathbf{p}}=\hat{\mathbf{u}}+\hat{\mathbf{v}}+\hat{\mathbf{w}} \cdot \hat{\mathbf{q}}=\hat{\mathbf{u}} \times(\hat{\mathbf{v}} \times \hat{\mathbf{w}})$. If $\hat{\mathbf{p}} \cdot \hat{\mathbf{u}}=\frac{3}{2} \cdot \hat{\mathbf{p}} \hat{\mathbf{v}}=\frac{7}{4}|\hat{\mathbf{p}}|=2$ and $v=K . q$, then $K=$
AP EAPCET 2024 - 20th May Morning Shift
7
If $\mathbf{a}$ and $\mathbf{b}$ are the two non collinear vectors, then $|\mathbf{b}|\mathbf{a}+|\mathbf{a}| \mathbf{b}$ represents
AP EAPCET 2024 - 20th May Morning Shift
8
If $L M N$ are the mid-points of the sides $P Q, Q R$ and $R P d$ $\triangle P Q R$ respectively, then $$ \begin{aligned} & \mathbf{Q M}+\mathbf{L N}+\mathbf{M L}+\mathbf{R N}-\mathbf{M N}-\mathbf{Q L}= \end{aligned} $$
AP EAPCET 2024 - 19th May Evening Shift
9
Let $\mathbf{a} \times \mathbf{b}=7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\mathbf{a}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$. If the length of projection of $\mathbf{b}$ on $\mathbf{a}$ is $$ \frac{8}{\sqrt{14}}, \text { then }|b|= $$
AP EAPCET 2024 - 19th May Evening Shift
10
Let $A B C$ be an equilateral triangle of side a. $M$ and $N$ are two points on the sides $A B$ and $A C$, respectively such that $\mathbf{A N}={ }^{\prime} K \mathbf{A C}$ and $\mathbf{A B}=3 \mathbf{A M}$. If the vectors $\mathbf{B N}$ and $\mathbf{C M}$ are perpendicular, then $K=$
AP EAPCET 2024 - 19th May Evening Shift
11
Let $\mathbf{a}$ and $\mathbf{b}$ be two non-collinear vector of unit modulus. If $\mathbf{u}=\mathbf{a}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}$ and $\mathbf{v}=\mathbf{a} \times \mathbf{b}$, then $|\mathbf{v}|=$
AP EAPCET 2024 - 19th May Evening Shift
12
In a regular hexagon $A B C D E F, \mathbf{A B}=\mathbf{a}$ and $\mathbf{B C}=\mathbf{b}$, then $F A=$
AP EAPCET 2024 - 18th May Morning Shift
13
If $\mathbf{f}, \mathbf{g}, \mathbf{h}$ be mutually orthogonal vectors of equal magnitudes, then the angle between the vectors $\mathbf{f}+\mathbf{g}+\mathbf{h}$ and $\mathbf{h}$ is
AP EAPCET 2024 - 18th May Morning Shift
14
Let $\mathbf{a}, \mathbf{b}$ be two unit vectors. If $\mathbf{c}=\mathbf{a}+2 \mathbf{b}$ and $\mathbf{d}=5 \mathbf{a}-4 \mathbf{b}$ are perpendicular to each other, then the angle between $a$ and $b$ is
AP EAPCET 2024 - 18th May Morning Shift
15
If the vectors $\mathbf{a}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$, $\mathbf{c}=3 \hat{\mathbf{i}}+p \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ are coplanar, then $p=$
AP EAPCET 2024 - 18th May Morning Shift
16
If $(\alpha, \beta, \gamma)$ are the direction cosines of an angular bisector of two lines whose direction ratios are $(2,2,1)$ and $(2,-1,-2)$, then $(\alpha+\beta+\gamma)^2=$
AP EAPCET 2024 - 18th May Morning Shift
17

a, b, c are non-coplanar vectors. If $$\mathbf{a}+3 \mathbf{b}+4 \mathbf{c}=x(\mathbf{a}-2 \mathbf{b}+3 \mathbf{c})+y(\mathbf{a}+5 \mathbf{b}-2 \mathbf{c}) +z(6 \mathbf{a}+14 \mathbf{b}+4 \mathbf{c}) \text {, then } x+y+z=$$

AP EAPCET 2022 - 5th July Morning Shift
18

Three vectors of magnitudes $$a, 2 a, 3 a$$ are along the directions of the diagonals of 3 adjacent faces of a cube that meet in a point. Then, the magnitude of the sum of those diagonals is

AP EAPCET 2022 - 5th July Morning Shift
19

If $$\mathbf{a}$$ is collinear with $$\mathbf{b}=3 \hat{i}+6 \hat{j}+6 \hat{k}$$ and $$\mathbf{a} \cdot \mathbf{b}=27$$, then $$|\mathbf{a}|=$$

AP EAPCET 2022 - 5th July Morning Shift
20

Let $$a, b$$ and $$c$$ be unit vectors such that $$a$$ is perpendicular to the plane containing $$\mathbf{b}$$ and $$\mathbf{c}$$ and angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then, $$|\mathbf{a}+\mathbf{b}+\mathbf{c}|=$$

AP EAPCET 2022 - 5th July Morning Shift
21

Let $$\mathbf{F}=2 \hat{i}+2 \hat{j}+5 \hat{k}, A=(1,2,5), B=(-1,-2,-3)$$ and $$\mathbf{B A} \times \mathbf{F}=4 \hat{i}+6 \hat{j}+2 \lambda \hat{k}$$, then $$\lambda=$$

AP EAPCET 2022 - 5th July Morning Shift
22

$$O A B C$$ is a tetrahedron. If $$D, E$$ are the mid-points of $$O A$$ and $$B C$$ respectively, then $$\mathbf{D E}=$$

AP EAPCET 2022 - 4th July Evening Shift
23

If $$\mathbf{a}+\mathbf{b}+\mathbf{c}=0$$ and $$|\mathbf{a}|=7,|\mathbf{b}|=5,|\mathbf{c}|=3$$ then the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is

AP EAPCET 2022 - 4th July Evening Shift
24

If $$P$$ and $$Q$$ are two points on the curve $$y=2^{x+2}$$ in the rectangular cartesian coordinate system such that $$\mathbf{O P} \cdot \hat{i}=-1, \mathrm{OQ} \cdot \hat{i}=2$$, then $$\mathrm{OQ}-4 \mathrm{OP}=$$

AP EAPCET 2022 - 4th July Evening Shift
25

In quadrilateral $$A B C D, \mathbf{A B}=\mathbf{a}, \mathbf{B C}=\mathbf{b}$$. $$\mathbf{D A}=\mathbf{a}-\mathbf{b}, M$$ is the mid-point of $$B C$$ and $$X$$ is a point on DM such that, $$\mathbf{D X}=\frac{4}{5}$$ DM. Then, the points $$A, X$$ and $$C$$.

AP EAPCET 2022 - 4th July Morning Shift
26

The vectors $$3 \mathbf{a}-5 \mathbf{b}$$ and $$2 \mathbf{a}+\mathbf{b}$$ are mutually perpendicular and the vectors $$a+4 b$$ and $$-\mathbf{a}+\mathbf{b}$$ are also mutually perpendicular, then the acute angle between $$\mathbf{a}$$ and $$\mathbf{b}$$ is

AP EAPCET 2022 - 4th July Morning Shift
27

Let $$\mathbf{a}=x \hat{i}+y \hat{j}+z \hat{k}$$ and $$x=2 y$$. If $$|\mathbf{a}|=5 \sqrt{2}$$ and a makes an angle of $$135^{\circ}$$ with the Z-axis, then $$\mathbf{a}=$$

AP EAPCET 2022 - 4th July Morning Shift
28

Let $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ be the position vectors of the vertices of a $$\triangle A B C$$. Through the vertices, lines are drawn parallel to the sides to form the $$\Delta A^{\prime} B^{\prime} C^{\prime}$$. Then, the centroid of $$\Delta A^{\prime} B^{\prime} C^{\prime}$$ is

AP EAPCET 2022 - 4th July Morning Shift
29

The position vectors of the points $$A$$ and $$B$$ with respect to $$O$$ are $$2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. The length of the internal bisector of $$\angle B O A$$ of $$\triangle A O B$$ is (take proportionality constant is 2)

AP EAPCET 2021 - 20th August Morning Shift
30

Let $$\mathbf{u}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{v}=-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}$$ and $$\mathbf{w}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$$. Then which of the following statement is true?

AP EAPCET 2021 - 20th August Morning Shift
31

If a = (1, 1, 0) and b = (1, 1, 1), then unit vector in the plane of a and b and perpendicular to a is

AP EAPCET 2021 - 20th August Morning Shift
32

Let $$\mathbf{a}=\hat{\mathbf{i}}$$ and $$\mathbf{b}=\hat{\mathbf{j}}$$, the point of intersection of the lines $$\mathbf{r} \times \mathbf{a}=\mathbf{b} \times \mathbf{a}$$ and $$\mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$$ is

AP EAPCET 2021 - 20th August Morning Shift
33

Which of the following vector is equally inclined with the coordinate axes?

AP EAPCET 2021 - 19th August Evening Shift
34

If $$\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$, and $$3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ are position vectors of $$A, B$$ and $$C$$ respectively and if $$D$$ and $$E$$ are mid points of sides $$B C$$ and $$A C$$, then $$\mathbf{D E}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
35

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} < 0$$ and $$|\mathbf{a} \cdot \mathbf{b}|=|\mathbf{a} \times \mathbf{b}|$$ then the angle between the vectors $$\mathbf{a}$$ and $$\mathbf{b}$$ is

AP EAPCET 2021 - 19th August Evening Shift
36

Let $$\mathbf{a}, \mathbf{b}$$ and $$\mathbf{c}$$ be three-unit vectors and $$\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}=0$$. If the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then $$[\mathbf{a b c}]^2$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
37

Let $$x$$ and $$y$$ are real numbers. If $$\mathbf{a}=(\sin x) \hat{\mathbf{i}}+(\sin y) \hat{\mathbf{j}}$$ and $$\mathbf{b}=(\cos x) \hat{\mathbf{i}}+(\cos y) \hat{\mathbf{j}}$$, then $$|\mathbf{a} \times \mathbf{b}|$$ is

AP EAPCET 2021 - 19th August Evening Shift
38

A vector makes equal angles $$\alpha$$ with $$X$$ and $$Y$$-axis, and $$90 \Upsilon$$ with $$Z$$-axis. Then, $$\alpha$$ is equal to (c) 45Yand 135Y (d) $90 \mathrm{Y}$

AP EAPCET 2021 - 19th August Morning Shift
39

Angle made by the position vector of the point (5, $$-$$4, $$-$$3) with the positive direction of X-axis is

AP EAPCET 2021 - 19th August Morning Shift
40

If the volume of the parallelopiped formed by the vectors $$\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$$ and $$a \hat{\mathbf{i}}+\hat{\mathbf{k}}$$ becomes minimum, then $$a$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
41

If $$\mathbf{a}=\frac{3}{2} \hat{\mathbf{k}}$$ and $$\mathbf{b}=\frac{2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}}{2}$$, then angle between $$\mathbf{a}+\mathbf{b}$$ and $$\mathbf{a}-\mathbf{b}$$ is

AP EAPCET 2021 - 19th August Morning Shift
42

Let $$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$$ and $$\mathbf{c}=7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$$, then the area of parallelogram having diagonals $$\mathbf{a}+\mathbf{b}$$ and $$\mathbf{b}+\mathbf{c}$$ is

AP EAPCET 2021 - 19th August Morning Shift
43

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$|\mathbf{a}|=2, |\mathbf{b}|=3$$ and $$\mathbf{a}+t \mathbf{b}$$ and $$\mathbf{a}-t \mathbf{b}$$ are perpendicular, where $$t$$ is a positive scalar, then

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12