Limits, Continuity and Differentiability · Mathematics · AP EAPCET
MCQ (Single Correct Answer)
$$\lim _\limits{x \rightarrow-\infty} \log _e(\cosh x)+x=$$
If $$a, b$$ and $$c$$ are three distinct real numbers and $$\lim _\limits{x \rightarrow \infty} \frac{(b-c) x^2+(c-a) x+(a-b)}{(a-b) x^2+(b-c) x+(c-a)}=\frac{1}{2}$$, then $$a+2 c=$$
$$\lim _\limits{x \rightarrow-\infty} \frac{3|x|-x}{|x|-2 x}-\lim _\limits{x \rightarrow 0} \frac{\log \left(1+x^3\right)}{\sin ^3 x}=$$
If $$[\cdot]$$ denotes greatest integer function, then $$\lim _\limits{x \rightarrow \frac{-3}{5}} \frac{1}{\dot{x}}\left[\frac{-1}{x}\right]=$$
If $$l, m(l< m)$$ are roots of $$a x^2+b x+c=0$$, then $$\lim _\limits{x \rightarrow \alpha} \frac{\left|a x^2+b x+c\right|}{a x^2+b x+c}=$$
Let $$f(x)=\left\{\begin{array}{cl}\frac{1}{|x|}, & \text { for }|x|>1 \\ a x^2+b, & \text { for }|x| \leq 1\end{array}\right.$$. If $$\lim _\limits{x \rightarrow 1^{+}} f(x)$$ and $$\lim _\limits{x \rightarrow 1^{-}} f(x)$$ exist, then the possible values for $$a$$ and $$b$$ are
$$\frac{d}{d x}\left(\lim _{x \rightarrow 2} \frac{1}{y-2}\left(\frac{1}{x}-\frac{1}{x+y-2}\right)\right)=$$
If $$f(x)=\left\{\begin{array}{cc}\frac{x^2 \log (\cos x)}{\log (1+x)} & , \quad x \neq 0 \\ 0 & , x=0\end{array}\right.$$, then at $$x=0, f(x)$$ is
Let $$f: R^{+} \longrightarrow R^{+}$$ be a function satisfying $$f(x)-x=\lambda$$ (constant), $$\forall x \in R^{+}$$ and $$f(x f(y))=f(x y)+x, \forall x, y, \in R^{+}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{(f(x))^{1 / 3}-1}{(f(x))^{1 / 2}-1}=$$
$$\begin{aligned} & \text { If } \lim _{x \rightarrow 0} \frac{|x|}{\sqrt{x^4+4 x^2+5}}=k \\ & \lim _{x \rightarrow 0} x^4 \sin \left(\frac{1}{3 \sqrt{x}}\right)=l \text {. Then, } k+l= \end{aligned}$$
If $$\lim _\limits{n \rightarrow \infty} x^n \log _e x=0$$, then $$\log _x 12=$$
If $$f(x)=\operatorname{Max}\{3-x, 3+x, 6\}$$ is not differentiable at $$x=a$$, and $$x=b$$, then $$|a|+|b|=$$
$$\lim _\limits{n \rightarrow \infty}\left(\frac{1}{1^5+n^5}+\frac{2^4}{2^5+n^5}+\frac{3^4}{3^5+n^5}+\ldots+\frac{n^4}{n^5+n^5}\right)=$$
$$\mathop {\lim }\limits_{n \to \infty } {{n{{(2n + 1)}^2}} \over {(n + 2)({n^2} + 3n - 1)}}$$ is equal to
If the function $$f(x)$$, defined below, is continuous on the interval $$[0,8]$$, then $$f(x)=\left\{\begin{array}{cc}x^2+a x+b & , \quad 0 \leq x < 2 \\ 3 x+2, & 2 \leq x \leq 4 \\ 2 a x+5 b & , 4 < x \leq 8\end{array}\right.$$
If $$f(x)$$, defined below, is continuous at $$x=4$$, then
$$f(x) = \left\{ {\matrix{ {{{x - 4} \over {|x - 4|}} + a} & , & {x < 4} \cr {a + b} & , & {x = 4} \cr {{{x - 4} \over {|x - 4|}} + b} & , & {x > 4} \cr } } \right.$$
If $$f(x)=\left\{\begin{array}{cc}\frac{e^{\alpha x}-e^x-x}{x^2}, & x \neq 0 \\ \frac{3}{2}, & x=0\end{array}\right.$$
Find the value of $$\alpha$$ for which the function $$f$$ is continuous
The value of $$k(k > 0)$$, for which the function $$f(x)=\frac{\left(e^x-1\right)^4}{\sin \left(\frac{x^2}{k^2}\right) \log \left(1+\frac{x^2}{2}\right)}$$, where $$x \neq 0$$ and $$f(0)=8$$
If $$f^{\prime \prime}(x)$$ is continuous at $$x=0$$ and $$f^{\prime \prime}(0)=4$$, then find the following value. $$\lim _\limits{x \rightarrow 0} \frac{2 f(x)-3 f(2 x)+f(4 x)}{x^2}$$ is equal to
$$\lim _\limits{z \rightarrow 1} \frac{z^{(1 / 3)}-1}{z^{(1 / 6)}-1}$$ is equal to
$$f(x)=\left\{\begin{array}{cc} \frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ K \log 2 \log 3, & x=0 \end{array}\right.$$
Find the value of $$k$$ for which the function $$f$$ is continuous.
If the function $$f(x)$$, defined below is continuous in the interval $$[0, \pi]$$, then $$f(x)=\left\{\begin{array}{cc}x+a \sqrt{2}(\sin x) & , \quad 0 \leq x < \frac{\pi}{4} \\ 2 x(\cot x)+b, & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a(\cos 2 x)-b(\sin x), & \frac{\pi}{2} < x \leq \pi\end{array}\right.$$