Limits, Continuity and Differentiability · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
If $f(x)=\frac{5 x \cdot \operatorname{cosec}(\sqrt{x})-1}{(x-2) \operatorname{cosec}(\sqrt{x})}$, then $\lim \limits_{x \rightarrow \infty} f\left(x^2\right)=$
AP EAPCET 2024 - 21th May Morning Shift
2
$\lim \limits_{x \rightarrow 2} \frac{\sqrt{1+4 x}-\sqrt{3+3 x}}{x^3-8}=$
AP EAPCET 2024 - 21th May Morning Shift
3
If $$ \lim _{x \rightarrow \infty} \frac{(\sqrt{2 x+1}+\sqrt{2 x-1})^8+(\sqrt{2 x+1}-\sqrt{2 x-1})^8\left(P x^4-16\right)}{\left(x+\sqrt{x^2-2}\right)^8+\left(x-\sqrt{x^2-2}\right)^8}=1 $$ then $P=$
AP EAPCET 2024 - 21th May Morning Shift
4
$\lim \limits_{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^5}{1-\sin 2 x}=$
AP EAPCET 2024 - 20th May Evening Shift
5
If $\lim \limits_{x \rightarrow 0} \frac{e^x-a-\log (1+x)}{\sin x}=0$, then $a=$
AP EAPCET 2024 - 20th May Evening Shift
6

The values of $a$ and $b$ for which the function

$ f(x)=\left\{\begin{array}{cl}1+|\sin x|^{\frac{a}{\sin x \mid}} & \frac{-\pi}{6} < x < 0 \\ b, & x=0 \quad \text { is continuous at } x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x},} & 0 < x < \frac{\pi}{6}\end{array}\right. $

are

AP EAPCET 2024 - 20th May Evening Shift
7

If $f(x)=\left\{\begin{array}{cc}2 x+3, & x \leq 1 \\ a x^2+b x, & x>1\end{array}\right.$

is differentiable, $\forall x \in R$, then $f^{\prime}(2)=$

AP EAPCET 2024 - 20th May Evening Shift
8
In the interval $[0,3]$ The function $f(x)=|x-1|+|x-2|$ is
AP EAPCET 2024 - 20th May Evening Shift
9
$\lim \limits_{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2+x^5+x^6}}{x^4}=$
AP EAPCET 2024 - 20th May Morning Shift
10
$\lim \limits_{x \rightarrow 1} \frac{\sqrt{x}-1}{\left(\cos ^{-1} x\right)^2}=$
AP EAPCET 2024 - 20th May Morning Shift
11

If a function $f(x)=\left\{\begin{array}{cl}\frac{\tan (\alpha+1) x+\tan 2 x}{x} & \text { if } x>0 \\ \beta & \text { at } x=0 \text { is } \\ \frac{\sin 3 x-\tan 3 x}{x^3} & \text { if } x<0\end{array}\right.$

continuous at $x=0$, then $|\alpha|+|\beta|=$

AP EAPCET 2024 - 20th May Morning Shift
12
$$ \lim \limits_{x \rightarrow 3} \frac{x^3-27}{x^2-9}= $$
AP EAPCET 2024 - 19th May Evening Shift
13

If $f(x)=\left\{\begin{array}{ll}3 a x-2 b, & x>1 \\ a x+b+1, & x<1\end{array}\right.$ and

$\lim \limits_{x \rightarrow 1} f(x)$ exists, then the relation between $a$ and $b$ is

AP EAPCET 2024 - 19th May Evening Shift
14
The function $f(x)=\left\{\begin{array}{ll}\frac{2}{5-x}, & x<3 \\ 5-x, & x \geq 3\end{array}\right.$ is
AP EAPCET 2024 - 19th May Evening Shift
15

If $f(x)=\left\{\begin{array}{cl}x^\alpha \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$

which of the following is true?

AP EAPCET 2024 - 19th May Evening Shift
16
Let $f(x)=\min \left\{x, x^2\right\}$ for every real number of $x$, then
AP EAPCET 2024 - 19th May Evening Shift
17
$\lim \limits_{x \rightarrow 0} \frac{1-\cos x \cdot \cos 2 x}{\sin ^2 x}=$
AP EAPCET 2024 - 18th May Morning Shift
18
$\lim \limits_{x \rightarrow-1}\left(\frac{3 x^2-2 x+3}{3 x^2+x-2}\right)^{3 x-2}=$
AP EAPCET 2024 - 18th May Morning Shift
19

$f(x)=\left\{\begin{array}{cl}\frac{\left(2 x^2-a x+1\right)-\left(a x^2+3 b x+2\right)}{x+1}, & \text { if } x \neq-1 \\ k_k, & \text { if } x=-1\end{array}\right.$

is a real valued function. If $a, b, k \in R$ and $f$ is continuous on $R$, then $k=$

AP EAPCET 2024 - 18th May Morning Shift
20
If $f(x)=\left\{\begin{array}{cl}\frac{2 x e^{1 / 2 x}-3 x e^{-1 / 2 x}}{e^{1 / 2 x}+4 e^{-1 / 2 x}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is a real valued function, then
AP EAPCET 2024 - 18th May Morning Shift
21

$$\lim _\limits{x \rightarrow-\infty} \log _e(\cosh x)+x=$$

AP EAPCET 2022 - 5th July Morning Shift
22

If $$a, b$$ and $$c$$ are three distinct real numbers and $$\lim _\limits{x \rightarrow \infty} \frac{(b-c) x^2+(c-a) x+(a-b)}{(a-b) x^2+(b-c) x+(c-a)}=\frac{1}{2}$$, then $$a+2 c=$$

AP EAPCET 2022 - 5th July Morning Shift
23

$$\lim _\limits{x \rightarrow-\infty} \frac{3|x|-x}{|x|-2 x}-\lim _\limits{x \rightarrow 0} \frac{\log \left(1+x^3\right)}{\sin ^3 x}=$$

AP EAPCET 2022 - 5th July Morning Shift
24

If $$[\cdot]$$ denotes greatest integer function, then $$\lim _\limits{x \rightarrow \frac{-3}{5}} \frac{1}{\dot{x}}\left[\frac{-1}{x}\right]=$$

AP EAPCET 2022 - 4th July Evening Shift
25

If $$l, m(l< m)$$ are roots of $$a x^2+b x+c=0$$, then $$\lim _\limits{x \rightarrow \alpha} \frac{\left|a x^2+b x+c\right|}{a x^2+b x+c}=$$

AP EAPCET 2022 - 4th July Evening Shift
26

Let $$f(x)=\left\{\begin{array}{cl}\frac{1}{|x|}, & \text { for }|x|>1 \\ a x^2+b, & \text { for }|x| \leq 1\end{array}\right.$$. If $$\lim _\limits{x \rightarrow 1^{+}} f(x)$$ and $$\lim _\limits{x \rightarrow 1^{-}} f(x)$$ exist, then the possible values for $$a$$ and $$b$$ are

AP EAPCET 2022 - 4th July Evening Shift
27

$$\frac{d}{d x}\left(\lim _{x \rightarrow 2} \frac{1}{y-2}\left(\frac{1}{x}-\frac{1}{x+y-2}\right)\right)=$$

AP EAPCET 2022 - 4th July Evening Shift
28

If $$f(x)=\left\{\begin{array}{cc}\frac{x^2 \log (\cos x)}{\log (1+x)} & , \quad x \neq 0 \\ 0 & , x=0\end{array}\right.$$, then at $$x=0, f(x)$$ is

AP EAPCET 2022 - 4th July Evening Shift
29

Let $$f: R^{+} \longrightarrow R^{+}$$ be a function satisfying $$f(x)-x=\lambda$$ (constant), $$\forall x \in R^{+}$$ and $$f(x f(y))=f(x y)+x, \forall x, y, \in R^{+}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{(f(x))^{1 / 3}-1}{(f(x))^{1 / 2}-1}=$$

AP EAPCET 2022 - 4th July Morning Shift
30

$$\begin{aligned} & \text { If } \lim _{x \rightarrow 0} \frac{|x|}{\sqrt{x^4+4 x^2+5}}=k \\ & \lim _{x \rightarrow 0} x^4 \sin \left(\frac{1}{3 \sqrt{x}}\right)=l \text {. Then, } k+l= \end{aligned}$$

AP EAPCET 2022 - 4th July Morning Shift
31

If $$\lim _\limits{n \rightarrow \infty} x^n \log _e x=0$$, then $$\log _x 12=$$

AP EAPCET 2022 - 4th July Morning Shift
32

If $$f(x)=\operatorname{Max}\{3-x, 3+x, 6\}$$ is not differentiable at $$x=a$$, and $$x=b$$, then $$|a|+|b|=$$

AP EAPCET 2022 - 4th July Morning Shift
33

$$\lim _\limits{n \rightarrow \infty}\left(\frac{1}{1^5+n^5}+\frac{2^4}{2^5+n^5}+\frac{3^4}{3^5+n^5}+\ldots+\frac{n^4}{n^5+n^5}\right)=$$

AP EAPCET 2022 - 4th July Morning Shift
34

$$\mathop {\lim }\limits_{n \to \infty } {{n{{(2n + 1)}^2}} \over {(n + 2)({n^2} + 3n - 1)}}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
35

If the function $$f(x)$$, defined below, is continuous on the interval $$[0,8]$$, then $$f(x)=\left\{\begin{array}{cc}x^2+a x+b & , \quad 0 \leq x < 2 \\ 3 x+2, & 2 \leq x \leq 4 \\ 2 a x+5 b & , 4 < x \leq 8\end{array}\right.$$

AP EAPCET 2021 - 20th August Morning Shift
36

If $$f(x)$$, defined below, is continuous at $$x=4$$, then

$$f(x) = \left\{ {\matrix{ {{{x - 4} \over {|x - 4|}} + a} & , & {x < 4} \cr {a + b} & , & {x = 4} \cr {{{x - 4} \over {|x - 4|}} + b} & , & {x > 4} \cr } } \right.$$

AP EAPCET 2021 - 20th August Morning Shift
37

If $$f(x)=\left\{\begin{array}{cc}\frac{e^{\alpha x}-e^x-x}{x^2}, & x \neq 0 \\ \frac{3}{2}, & x=0\end{array}\right.$$

Find the value of $$\alpha$$ for which the function $$f$$ is continuous

AP EAPCET 2021 - 19th August Evening Shift
38

The value of $$k(k > 0)$$, for which the function $$f(x)=\frac{\left(e^x-1\right)^4}{\sin \left(\frac{x^2}{k^2}\right) \log \left(1+\frac{x^2}{2}\right)}$$, where $$x \neq 0$$ and $$f(0)=8$$

AP EAPCET 2021 - 19th August Evening Shift
39

If $$f^{\prime \prime}(x)$$ is continuous at $$x=0$$ and $$f^{\prime \prime}(0)=4$$, then find the following value. $$\lim _\limits{x \rightarrow 0} \frac{2 f(x)-3 f(2 x)+f(4 x)}{x^2}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
40

$$\lim _\limits{z \rightarrow 1} \frac{z^{(1 / 3)}-1}{z^{(1 / 6)}-1}$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
41

$$f(x)=\left\{\begin{array}{cc} \frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ K \log 2 \log 3, & x=0 \end{array}\right.$$

Find the value of $$k$$ for which the function $$f$$ is continuous.

AP EAPCET 2021 - 19th August Morning Shift
42

If the function $$f(x)$$, defined below is continuous in the interval $$[0, \pi]$$, then $$f(x)=\left\{\begin{array}{cc}x+a \sqrt{2}(\sin x) & , \quad 0 \leq x < \frac{\pi}{4} \\ 2 x(\cot x)+b, & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a(\cos 2 x)-b(\sin x), & \frac{\pi}{2} < x \leq \pi\end{array}\right.$$

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12